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1 Introduction

We consider the problem of sharing the cost of a landing strip among airlines
who need airstrips of different lengths. A “rule” is a function that associates
with each airport problem, an allocation of the cost of the airstrip, which
we call a “contribution vector.” A number of desirable properties of rules
have been formulated for this problem, and motivated by various fairness
principles. The literature devoted to the search for rules satisfying these
properties, singly and in various combinations, is initiated by Littlechild and
Owen (1973).1

Our first purpose is to define the bilateral version of the following consis-
tency property2, and then propose the converse of the bilateral consistency
property and study its implications when imposed together with other de-
sirable properties. Let ci be the cost parameter that represents the cost of
fulfilling airline i’s need. Consider a problem and a contribution vector x
chosen by a rule for it. Imagine that some airlines pay their contributions
and “leaves”, and reassess the situation from the viewpoint of the remaining
airlines. Let the cost parameters of the remaining airlines be revised as fol-
lows: (i) for each airline j, its revised cost parameter is the maximum of 0
and cj − xi. Then, “consistency” (Potters and Sudhölter, 1999) of the rule
says that the components of x pertaining to the remaining airlines should
still be chosen by the rule for the reduced problem just defined.3

We say that a rule is “conversely consistent” if whenever for some air-
port problem, a contribution vector has the property that for each proper
two-airline subgroups, the rule chooses the restriction of the vector to this
subgroup for the reduced problem it faces, then the vector should be rec-
ommended for the initial problem by the rule.4 We show that the so-called

1For a comprehensive survey of this literature, see Thomson (2004).
2This property is an application of a general principle of consistency for airport problem.

The general consistency principle has been studied extensively in a great variety of models
such as taxation, bargaining, exchange, matching, social choice etc. For a comprehensive
survey of the literature on this principle, see Thomson (2000).

3Potters and Sudhölter (1999) refer to it as ψ-consistency. We adopt Thomson (2004)’s
terminology.

4Our converse consistency is an application of a general principle of converse consis-
tency for airport problems. The general principle of converse consistency has been studied
and applied to a number of models by many authors such as Chang and Hu (2007); Chun
(2002).
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“constrained equal benefits rule”5 (henceafter, the CEB rule), which equates
airlines’ benefits (the difference between the cost of satisfying this airline’s
need and his contribution) subject to no one receiving a transfer, satisfies
converse consistency. We then base axiomatic characterizations of the CEB
rule on this property together with other desirable properties.

Our second purpose is to justify the CEB rule from the non-cooperative
perspective. It is well-known that the non-cooperative justification for a
rule often follows from designing a specific bargaining procedure that leads
to the outcome of the rule.6 Like several others7, we use consistency and
converse consistency as guides in designing an extensive form game. We
show that the unique subgame perfect equilibrium outcome of the game is
the contribution vector recommended by the CEB rule, which gives a non-
cooperative justification of the rule.

2 Notation and definitions

2.1 The model

Let U j N be a universe of agents with at least two elements, where N is
the set of natural numbers. Given a finite and nonempty set N j U and
i ∈ N , let ci ∈ R+ be agent i’s cost parameter and c = (ci)i∈N ∈ RN

+ be
the profile of cost parameters. An airport problem, or simply a problem, is
a pair (N, c). Let A be the class of all problems on U . Given (N, c) ∈ A, let
n denote the number of agents in N . Without loss of generality, we assume
that N ≡ {1, . . . , n} and c1 ≤ · · · ≤ cn. Thus, we refer to agent 1 as the first
agent and agent n as the last agent. A contribution vector for (N, c) ∈ A
is a vector x ∈ RN

+ such that
∑

i∈N xi = maxi∈N ci and for each i ∈ N ,
xi ≤ ci. Let X(N, c) be the set of all contribution vectors for (N, c) ∈ A. A
rule is a function defined on A that associates with each problem (N, c) ∈ A
a vector x ∈ X(N, c). Our generic notation for rules is ϕ. For each coalition
N ′ ⊂ N , we denote (ci)i∈N ′ by cN ′ , (ϕi (N, c))i∈N ′ by ϕN ′ (N, c), and so on.

5The rule is introduced by Sudhölter (1996, 1997) under the name of modified nucleolus.
6For this line of research, see Serrano (1997), Krishna and Serrano (1996), and Serrano

(2005).
7For references, see Dagan et al. (1997); Chang and Hu (2008).
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2.2 The central rules and properties

We now introduce our central rules. The first one is defined only for the two-
agent problem. It says that the agent with smaller cost parameter contributes
half of his cost parameter, and the other contributes the remaining amount
to be collected.

Standard rule, S: For each i, j ∈ N and each ({i, j}, (ci, cj)) ∈ A with
ci ≤ cj,

Si ({i, j}, (ci, cj)) = ci

2

Sj ({i, j}, (ci, cj)) = cj − Si ({i, j}, (ci, cj)) .

The following rule, which is proposed by Sudhölter (1996, 1997) under
the name of modified nucleolus in the theory of transferable utility game,
was informally introduced in Section 1. The terminology we adopt here is
borrowed from Thomson (2004).

Constrained Equal Benefits rule, CEB: For each (N, c) ∈ A and each
i ∈ N ,

CEBi(N, c) ≡ max {ci − β, 0} ,

where β ∈ R+ is chosen such that
∑

i∈N CEBi(N, c) = maxj∈N cj.

Remark 1: It is known that the CEB rule, the “sequential equal contribu-
tions rule”, and the “nucleolus” coincide with the standard rule for two-agent
problems.

We next formulate our central properties. The first one is the bilateral
version of the following consistency property. Consider a problem and a con-
tribution vector x chosen by a rule for this problem. Imagine now that agent i
contributes xi and leaves, and reassess the situation from the viewpoint of
the remaining agents. Instead of thinking of xi as covering an abstract part
of the airstrip, it is natural to think of xi as a contribution to the part of the
airstrip agent i uses. For each agent j (with cj ≥ ci), its cost parameter is
revised down by the amount xi since contributing to the part of the airstrip
agent i uses implies contributing to the part of the airstrip that agents i and
j use. For each agent k (with ck < ci), how should xi be imputed to agent
k’s cost parameter? One can think of xi as a contribution to the part of the
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airstrip that agents i and k use. If ck > xi, then agent k benefits completely
from agent i’s contribution. Thus, agent k’s cost parameter is revised down
by the amount xi; otherwise, agent k benefits partially from agent i’s contri-
bution. Since ck is the maximal amount that agent k can benefit, agent k’s
cost parameter is revised down by the amount ck. Namely, the revised cost
parameter of agent k is zero. Thus, the revised cost parameter of agent k is
obtained by taking the maximum of zero and ck−xi. “Consistency” (Potters
and Sudhölter, 1999) of the rule says that the components of x pertaining
to the remaining agents should still be chosen by the rule for the reduced
problem just defined.8

We apply the above idea to define the bilateral version of consistency.
Let (N, c) ∈ A with n ≥ 2, i ∈ N\{n}, and x ∈ X(N, c). The reduced
problem of (N, c) with respect to N ′ = {i, n} and x, (N ′, ucxN ′), is
defined by9

(ucxN ′)i = max
{
ci −

∑
k 6=i,n xk, 0

}
, and

(ucxN ′)n = max{cn −
∑

k 6=i,n xk, 0}.

Bilateral consistency: For each (N, c) ∈ A with n ≥ 2 and each i ∈ N\{n},
if x = ϕ (N, c), then

(
{i, n} , ucx{i,n}

)
∈ A and x{i,n} = ϕ

(
{i, n} , ucx{i,n}

)
.

We next formulate the converse version of bilateral consistency.10

Converse consistency: For each (N, c) ∈ A with n > 2 and each x ∈
X(N, c), if for each N ′ ⊂ N with |N ′| = 2 and n ∈ N ′, xN ′ = ϕ (N ′, ucxN ′),
then x = ϕ (N, c).

8Potters and Sudhölter (1999) do not consider the possibility of the departure of the
last agent in the formulation of consistency since cn determines the total cost and after
the departure of the last agent, the new total cost to be covered would have no reason to
be related to the sum of the contributions required of the remaining agents.

9Potters and Sudhölter (1999) define their reduced problem as follows: Let (N, c) ∈ A
with n ≥ 2, i ∈ N\{n}, and x ∈ X(N, c). The reduced problem of (N, c) with respect
to N ′ = N\{i} and x, (N ′, ucxN ′), is defined as follows: for each j ∈ N ′ such that cj <
ci, (ucxN ′)j = max {cj − xi, 0} , and for each j ∈ N ′ such that cj ≥ ci, (ucxN ′)j = cj − xi.

10It can be shown that bilateral consistency and converse consistency are logically in-
dependent.
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3 Axiomatic characterizations

The following lemma establishes the existences of our axiomatic characteri-
zations of the CEB rule.

Lemma 1: The CEB rules satisfies converse consistency.

Proof. Let (N, c) ∈ A. Assume that N = {1, · · ·, n} and c1 ≤ · · · ≤ cn.

Let x ∈ X (N, c) be such that for each i 6= n, x{i,n} = CEB
(
{i, n} , ucx{i,n}

)
.

We show that x = CEB (N, c). Let i ∈ N\ {n}. Note that
∑
k∈N

xk = cn

and x{i,n} = CEB
(
{i, n} , ucx{i,n}

)
. It follows that

(
ucx{i,n}

)
n

= xi + xn and(
ucx{i,n}

)
i

= 2xi. Let β = cn − xn. Since cn =
∑

k∈N xk, then

ci − β = ci − cn + xn =

(
ci −

∑
k 6=i,n

xk

)
− xi.

If ci −
∑

k 6=i,n

xk ≥ 0, then 2xi =
(
ucx{i,n}

)
i

= ci −
∑

k 6=i,n

xk. It follows that

max{ci − β, 0} = xi. If ci −
∑

k 6=i,n

xk < 0, then
(
ucx{i,n}

)
i

= 0. Thus, xi = 0.

It follows that ci− β ≤ 0. Thus, max{ci− β, 0} = 0 = xi. We then conclude
that x = CEB (N, c). Q .E .D .

We consider the following desirable properties. The first one says that
two agents with the same cost parameters should contribute equal amounts.

Equal treatment of equals: For each N ∈ N , each c ∈ CN , and each pair
{i, j} ⊆ N , if ci = cj, then ϕi(N, c) = ϕj(N, c).

The second one is an order property. It says that of two agents, the
benefit (the difference between the cost parameter of an agent and this agent’s
contribution) to the agent with the larger cost parameter should be at least
as much as that to the other.11

Order preservation for benefits: For each N ∈ N , each c ∈ CN , and
each pair {i, j} ⊆ N , if ci ≤ cj, then ci − ϕi(N, c) ≤ cj − ϕj(N, c).

11The property is introduced by Littlechild and Thompson (1977).
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Our next property has to do with a possible increase of the cost parameter
of the last agent. It says that if the cost parameter of the last agent increases
by δ, then this agent’s contribution should increase by δ.12

Last-agent cost additivity: For each pair {(N, c) , (N, c′)} of elements of
A and each δ ∈ R+, if c′n = cn + δ and for each j ∈ N\{n}, c′j = cj, then
ϕn (N, c′) = ϕn (N, c) + δ.

The last one is a monotonicity requirement. It says that if an agent’s cost
parameter increases, all other agents should contribute at most as much as
they did initially.13

Cost monotonicity: For each N ∈ N , each c ∈ CN , each c′ ∈ CN , and each
i ∈ N , if c′i ≥ ci and for each j ∈ N\{i}, c′j = cj, then for each j ∈ N\{i},
ϕj(N, c

′) ≤ ϕj(N, c).

Remark 2: It is clear that order preservation for benefits implies equal
treatment of equals.

We are now ready to present the two announced characterizations of the
standard rule, which play important roles in our paper.

Proposition 1: For |N | = 2. The standard rule is the only rule satisfying
order preservation for benefits and cost monotonicity.

Proof. It is clear that the standard rule satisfies the two properties. Con-
versely, let (N, c) ∈ A with N ≡ {i, j} and ci ≤ cj. Let ϕ be a rule satisfying
the two properties. Let x = ϕ(N, c) and y = S(N, c). We show that xi = yi.
By efficiency, we then conclude that x = y. We consider two cases.

Case 1: ci = cj. By Remark 2, order preservation implies equal treatment
of equals. Thus, xi = xj = ci

2
= yi.

Case 2: ci < cj. Note that for the two-agent case, order preservation for
benefits implies that xi ≥ ci

2
. We show that xi = ci

2
. Let c′ ∈ A with

12It is a weaker version of the property, “covariance”, appeared in Potters and
Sudhölter (1999).

13This property is introduced by Thomson (2004) under the name of “others-oriented
cost monotonicity”. It is a complement of “individual cost monotonicity” (Potters and
Sudhölter, 1999) and says the following. Under the same hypotheses, agent i should pay
at least as much as he did initially.
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N ≡ {i, j} and c′i = ci and c′j = ci. Let x′ = ϕ(N, c′). By Case 1, x′i = ci

2
.

Note that c′i = ci and c′j < cj. By cost monotonicity, xi ≤ x′i. Thus, xi ≤ ci

2

and we derive xi = ci

2
. Q .E .D .

Proposition 2: For |N | = 2. The standard rule is the only rule satisfying
equal treatment of equals and last-agent cost additivity.

Proof. It is clear that the standard rule satisfies the two properties. Con-
versely, let (N, c) ∈ A with N ≡ {i, j} and ci ≤ cj. Let ϕ be a rule satisfying
the two properties. Let x = ϕ(N, c) and y = S(N, c). We show that x = y.
We consider two cases.

Case 1: ci = cj. By equal tretament of equals, xi = xj. By efficiency,
xi = xj = ci

2
= yi = yj.

Case 2: ci < cj. Let c′ ∈ A with N ≡ {i, j} and c′i = ci and c′j = ci. Let
x′ = ϕ(N, c′). By Case 1, x′j = ci

2
. By last-agent cost additivity of the CEB

rule, xj = x′j + δ, where δ ≡ cj − ci. Then, x = y. Q .E .D .

We use the following lemma to derive our characterizations of the CEB rule.

Elevator Lemma (Thomson, 2000): If a rule ϕ is consistent and coincides
with a conversely consistent rule ϕ′ in the two-agent case, then ϕ coincides
with ϕ′ in general.

It can be shown that the CEB rule satisfies equal treatment of equals, order
preservation for benefits, cost monotonicity, last-agent cost additivity, and
bilateral consistency. As shown in Lemma 1, it satisfies converse consistency.
With the help of the Elevator Lemma and Propositions 1 and 2, the next
results are immediate.14

Theorem 1: The CEB rule is the only bilaterally consistent rule satisfying
order preservation for benefits and cost monotonicity.

14Note that in the formulations of bilateral consistency and converse consistency, we
do not consider all two-agent subgroups. Thus, Theorems 1, 2, 3, and 4 are special
applications of the Elevator Lemma. To illustrate how the lemma can be applied here, we
give a formal proof of Theorem 1. Let (N, c) ∈ A with N ≡ {1, . . . , n} and c1 ≤ · · · ≤ cn.
Let ϕ be a bilaterally consistent rule satisfying the two properties. Let x = ϕ(N, c) and
y = CEB(N, c). We show that x = y. By bilateral consistency of ϕ, for each i ∈ N\{n},
ϕ{i,n}(N, c) = x{i,n}. Note that by Proposition 1, x{i,n} = y{i,n}. By converse consistency
of the CEB rule, we conclude that x = y. Q .E .D .
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Theorem 2: The CEB rule is the only conversely consistent rule satisfying
order preservation for benefits and cost monotonicity.

Theorem 3: The CEB rule is the only bilaterally consistent rule satisfying
equal treatment of equals and last-agent cost additivity.

Theorem 4: The CEB rule is the only conversely consistent rule satisfying
equal treatment of equals and last-agent cost additivity.

Hu, Tsay, and Yeh (2010) consider the bilateral version of another consis-
tency concept, “ν-consistency”, introduced by Potters and Sudhölter (1999).
The authors show that the “nucleolus” is the only bilaterally ν-consistent
or conversely ν-consistent rule satisfying equal treatment of equals and last-
agent cost additivity. Their characterizations of the nucleolus together with
our Theorems 3 and 4 illustrate that consistency and converse consistency
play important roles to distinguish the nucleolus and the CEB rule.

Potters and Sudhölter (1999) show that the CEB rule is the only consis-
tent rule satisfying equal treatment of equals and the following two properties.
The first one, “homogeneity”, says that if all cost parameters are multiplied
by the same positive number, so should the contributions. The second one,
“strong last-agent cost additivity”, says that if the cost parameter of an agent
with the largest cost parameter increases by δ, then its contribution should
increase by δ, and all other agents should contribute the same amounts as
they did initially.15 Theorem 3 and Potters and Sudhölter (1999) characteri-
zation provide axiomatic justification for the CEB rule. In that sense, the two
results are closely related. To compare the two results, note that we impose,
“efficiency”: the sum of the contributions should be equal to the entire cost,
on the definition of a rule. Thus, Theorem 3 says that a characterization of
the CEB rule can still be obtained from Potters and Sudhölter (1999) charac-
terization by replacing homogeneity by efficiency, and weakening consistency
and strong last-agent cost additivity to bilateral consistency and last-agent
cost additivity, respectively. As pointed out by Potters and Sudhölter (1999),
homogeneity, strong last-agent cost additivity and consistency altogether im-
ply efficiency. In addition, strong last-agent cost additivity and consistency
are stronger than last-agent cost additivity and bilateral consistency, respec-
tively. Thus, our Theorem 3 implies Potters and Sudhölter (1999) result
(check this).

15Potters and Sudhölter (1999) combine strong last-agent cost additivity and homogene-
ity as a property, referred to as covariance.
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4 Non-cooperative justification

We next establish a non-cooperative foundation of the CEB rule. It is well-
known that a non-cooperative justification of a rule often follows from design-
ing a particular bargaining process or game form that leads to the outcome
of the rule. We follow Krishna and Serrano (1996)’s idea to make use of
the properties of the solution concept, particularly consistency property or
its converse, to design the game form. Dagan et al. (1997), and Chang and
Hu (2008) study a specific class of the f -just rules of bankruptcy problems
and provide additional supports for the idea.

Let (N, c) be a problem. We design the following 3-stage extensive form
game Γ(N, c) that captures the notions of both bilateral consistency and
converse consistency. The game tree of Γ(N, c) is depicted in Figure 1.

Stage 1 : Each agent k ∈ N\{n} proposes his/her own voluntary contribu-
tion xk ∈ R+ with 0 ≤ xk ≤ ck. Let xn = cn −

∑
k 6=n xk, which we call

the induced contribution of agent n. We refer to x = (xk)k∈N as the
binding proposal.

Stage 2 : Agent n decides to take either action A (accept xn) or action R
(reject xn). If A is taken, then agent n contributes xn and the game
ends. The binding proposal x is the outcome of the game. If R is
taken, then agent n takes an agent in N\ {n}, say agent i, with him
to the next stage where their contributions will be determined. The
contribution of each agent k ∈ N\ {i, n} is equal to his/her voluntary
contribution xk.

Stage 3 : Nature picks one agent between agents i and n at random with
equal probability. If agent i is chosen, then the game ends. Agent

i contributes zi = max
{

0, ci −
∑

k 6=i,n xk

}
and agent n contributes

the residual zn = xi + xn − zi. If agent n is chosen, then the game

ends. Agent n contributes zn = max
{

0, cn −
∑

k 6=i,n xk

}
and agent i

contributes the residual zi = xi + xn − zn.

We next explain how the game Γ(N, c) captures the notions of both bi-
lateral consistency and converse consistency, and offer some interesting ob-
servations.
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1. In Stage 1, each agent k ∈ N\{n} announces his/her own voluntary
contribution. One may wonder why agent n plays no role in this stage.
It is because we make use of bilateral consistency to design the game
Γ(N, c). This idea is suggested by Krishna and Serrano (1996) in Nash
bargaining problems. Recall that the definition of bilateral consistency,
agent n is required to be in each possible reduced problem. In addition,
the requirement that the voluntary contribution of each agent, except
agent n, should be bounded above by his/her cost parameter and below
by 0, is reasonable. Note that there is no restriction on the induced
contribution of agent n. Namely, xn could be negative or greater than
cn. However, as we show, the equilibrium contribution of agent n will
be indeed bounded above by cn and below by 0.

2. Dagan et al. (1997), and Chang and Hu (2008) study non-cooperative
foundations of bankruptcy rules. In their settings, each agent is re-
quired to propose not only his own payoff but also the others’ payoffs.
However, in our setting, each agent is required to propose his own payoff
only. Thus, the information requirement for each agent in our setting
is less demanding.

3. In Stage 3, agents i and n play no role. Their contributions will be de-
termined by a randomization process which we call Nature. If Nature
chooses agent i, then the game ends and the contribution of agent i is

designed to be max
{

0, ci −
∑

k 6=i,n xk

}
. In other words, agent i com-

pares ci and
∑

k 6=i,n xk. If ci >
∑

k 6=i,n xk, then the amount
∑

k 6=i,n xk

is not enough to build an airstrip that agent i can use. To fulfill
agent i’s need, agent i will contribute the difference ci −

∑
k 6=i,n xk.

In this case, agent n contributes xi + xn −
(
ci −

∑
k 6=i,n xk

)
. Namely,

cn − ci; otherwise, agent i contributes nothing. Thus, agent n con-
tributes xi + xn. Similar argument can be applied to the case when
Nature chooses agent n.

4. Combining (1) and (3), we can see that Γ(N, c) captures the notions of
both bilateral consistency and converse consistency.

5. In Stage 3, we introduce Nature to determine the contributions of
agents i and n, and consider agents’ expected equilibrium contribu-
tions. In the literature on Nash program, several authors, such as Hart
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and Mas-Colell (1996) and Serrano (1997), also adopt similar random-
ization process to design agents’ payoffs and consider agents’ expected
equilibrium payoffs.

6. Dagan et al. (1997) and Chang and Hu (2008) provide non-cooperative
justifications for a class of f -just rules in bankruptcy problems. Their
results rely on a certain solution to solve two-agent bankruptcy prob-
lems. In contrast, our results do not invoke any solution to solve two-
agent airport problems.

The following notation is useful to construct a subgame perfect equilib-
rium of the game Γ (N, c). Let x ∈ RN be a binding proposal. Suppose
that agent n picks an agent, say agent i ∈ N\ {n}, in Stage 2. We de-
note the expected contributions of agents i and n in Stage 3 by τ i (c, x) =
(τ i

i (c, x) , τ i
n (c, x)), where

τ i
i (c, x) =

1

2

{
max{0, ci −

∑
k 6=i,n

xk}+ xi + xn −max{0, cn −
∑
k 6=i,n

xk}

}

and
τ i

n (c, x) = xi + xn − τ i
i (c, x) .

As we shown next, if x ∈ X (N, c) and agent n picks agent i in Stage 2, then

τ i (c, x) = CEB
(
{i, n} , ucx{i,n}

)
.

Lemma 2: Let (N, v) ∈ A. If the binding proposal x is a contribution
vector in X (N, c), and agent n chooses agent i in Stage 2, then τ i (c, x) =

CEB
(
{i, n} , ucx{i,n}

)
.

Proof. Let β = 1
2

(
ucx{i,n}

)
i
and x ∈ X (N, c). Thus,

(
ucx{i,n}

)
n

= max{0, cn−∑
k 6=i,n xk} = xi + xn. Note that the sum of the expected contributions of

agents i and n is equal to xi + xn. Thus, it suffices to show that agent i’s

expected contribution is equal to CEBi

(
{i, n} , ucx{i,n}

)
. To see this, note

that agent i’s expected contribution is

13



1

2

{(
ucx{i,n}

)
i
+ xi + xn −

(
ucx{i,n}

)
n

}
=

1

2

(
ucx{i,n}

)
i

=
(
ucx{i,n}

)
i
− β

= CEBi

(
{i, n} , ucx{i,n}

)
.

Q .E .D .

The next two results establish our non-cooperative justification of the
CEB rule. The first one says that the contribution vector recommended by
the CEB rule can be supported by a subgame perfect equilibrium of the game
Γ(N, c). As usual, we solve the game Γ(N, c) by backward induction.

Theorem 5: There exists a subgame perfect equilibrium of Γ (N, c) with
outcome CEB (N, c).

Proof. The proof is by construction of a strategy profile that is a subgame
perfect equilibrium of the game Γ (N, c) and generates outcome CEB (N, c).
Let f be the strategy profile defined as follows:

• Stage 1: Each agent k ∈ N\{n} proposes CEBk (N, c).

• Stage 2: Assume that x is a binding proposal. Let µ = min
k∈N\{n}

τ k
n (c, x).

Agent n decides to take action A or action R. If xn ≤ µ, then agent n
takes action A. If xn > µ, then agent n takes action R and picks agent
i ∈ N\ {n} with τ i

n (c, x) = µ.

Step 1: The outcome of the strategy profile f of the game Γ (N, c)
is CEB (N, c). Each agent k 6= n, by following fk, proposes CEBk (N, c)
in Stage 1. Let x̄ = CEB (N, c). Then x̄ is a binding proposal. By bilateral
consistency of the CEB rule, for each k 6= n,

x̄n = CEBn

(
{k, n} , ucx̄{k,n}

)
= τ k

n (c, x̄) .

Thus, µ = x̄n. By following fn, agent n then takes action A. The game ends
with outcome CEB (N, c).
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Step 2: The strategy profile f is a subgame perfect equilibrium of
the game Γ (N, c). It is easy to verify that following the strategy fn is the
best response for agent n in Stage 2 provided each agent k 6= n follows fk.
Let i ∈ N\ {n} and suppose that each agent k ∈ N\{i} follows fk. Suppose
that in Stage 1, agent i deviates by proposing x′i = x̄i − ε for some ε > 0.
Let x′ be the binding proposal induced by agent i’s deviation. Note that
x̄i + x̄n ≥ 0, x′n = x̄n + ε, and for each k ∈ N\{i, n}, x′k = x̄k. Note that
x̄ ∈ X(N, c). By Lemma 2, τ i

i (c, x̄) = x̄i. Thus,

τ i
i (c, x′) =

1

2
{max{0, ci −

∑
l 6=i,n

x′l}+ x′i + x′n −max{0, cn −
∑
l 6=i,n

x′l}}

=
1

2
{max{0, ci −

∑
l 6=i,n

x̄l}+ x̄i + x̄n −max{0, cn −
∑
l 6=i,n

x̄l}}

= τ i
i (c, x̄)

= x̄i.

Note that τ i
n (c, x′) = x′i + x′n − τ i

i (c, x′). It follows that τ i
n (c, x′) = x̄n. Let

k ∈ N\ {i, n}. Note that x′k + x′n ≥ 0. Thus,

τ k
k (c, x′) =

1

2
{max{0, ck −

∑
l 6=k,n

x′l}+ x′k + x′n −max{0, cn −
∑
l 6=k,n

x′l}}

=
1

2
max{0, ck −

∑
l 6=k,n

x̄l + ε}.

It follows that

τ k
n (c, x′) = x′k + x′n − τ k

k (c, x′)

= x̄k + x̄n + ε− 1

2
max{0, ck −

∑
l 6=k,n

x̄l + ε}.

If ck −
∑

l 6=k,n x̄l + ε ≤ 0, then τ k
n (c, x′) ≥ x̄n + 1

2
ε > x̄n = τ i

n (c, x′). If
ck −

∑
l 6=k,n x̄l + ε > 0, then by order preservation for benefits of the CEB

rule,
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τ k
n (c, x′) = x̄k + x̄n + ε− 1

2
max{0, ck −

∑
l 6=k,n

x̄l + ε}

= x̄n +
ε

2
+

1

2

{
x̄k +

∑
l 6=n

x̄l − ck

}

= x̄n +
ε

2
+

1

2
{cn − x̄n − (ck − x̄k)}

≥ x̄n +
ε

2
> x̄n

= τ i
n (c, x′) .

By following fn in Stage 2, agent n then picks agent i. Then, agent i ends
up with the contribution x̄i. Thus, agent i is not better off by deviating.
Suppose that in Stage 1, agent i deviates by proposing x′i = x̄i + ε for some
ε > 0. If in Stage 2, agent n takes action A, or if in Stage 2, agent n
takes action R and picks agent k ∈ N\ {i, n}, then agent i ends up with the
contribution x̄i + ε. Thus, agent i is not better off by deviating. If agent
n takes action R and picks agent i, then it can be shown that the expected
contribution of agent i is x̄i. Agent i is not better off by deviating. Thus, f
is a subgame perfect equilibrium of the game Γ(N, c). Q .E .D .

The next result says that the subgame perfect equilibrium outcome of the
game Γ(N, c) is unique. Moreover, it is CEB(N, c).

Theorem 6: Each subgame perfect equilibrium outcome of the game Γ (N, c)
is CEB (N, c).

Proof. Let g be a strategy profile that is a subgame perfect equilibrium of
the game Γ (N, c). Assume that each agent k 6= n proposes xk in Stage 1
by following gk. Let xn = cn −

∑
k 6=n xk and x = (xk)k∈N . In stage 2, by

following gn, agent n could either take action A or take action R.

Case 1: Agent n takes action A by following gn. Then, the game ends
with outcome x. We first show that x ∈ X (N, c), and then make use of
Lemma 2 to conclude that x = CEB(N, c). Suppose, by contradiction, that
x /∈ X(N, c). Note that

∑
i∈N xi = cn and for each k 6= n, by following gk,
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0 ≤ xk ≤ ck. Thus, either xn < 0 or xn > cn. Suppose that xn > cn. Since∑
k∈N xk = cn, there must be k ∈ N\{n} such that xk < 0. This violates

that for each k ∈ N\{n}, xk ≥ 0. It follows that xn < 0. Thus, there exists
i ∈ N\ {n} such that xi > 0 and cn −

∑
k 6=i,n xk < xi. We now claim that

agent i will be better off by deviating. Let agent i deviate by proposing 0 in
Stage 1. Let x′ be the binding proposal induced by agent i’s deviation. If in
stage 2, agent n takes action A, then agent i’s contribution is 0. Thus, agent
i is better off by deviating. This violates the supposition that g is a subgame
perfect equilibrium of the game Γ (N, c). If in Stage 2, agent n takes action
R and picks agent k ∈ N\{i, n}, then agent i’s contribution is 0. Thus, agent
i is better off by deviating. This violates the supposition that g is a subgame
perfect equilibrium of the game Γ (N, c). If in Stage 2, agent n takes action
R and picks agent i, then we consider two subcases.

Subcase 1.1: cn −
∑

k 6=i,n xk < 0. Note that x′i = 0, x′n = xi + xn, and
for each k ∈ N\{i, n}, x′k = xk. Thus, the expected contribution of agent i
is

τ i
i (c, x′) =

1

2

{
max{0, ci −

∑
k 6=i,n

x′k}+ (x′i + x′n)−max{0, cn −
∑
k 6=i,n

x′k}

}

=
1

2
{xi + xn} .

Note that xn < 0 < xi. Thus, τ i
i (c, x′) < xi. It follows that agent i is better

off by deviating. This violates the supposition that g is a subgame perfect
equilibrium of the game Γ (N, c).

Subcase 1.2: cn −
∑

k 6=i,n xk ≥ 0. Note that ci ≤ cn and cn−
∑

k 6=i,n xk <
xi. Thus, ci −

∑
k 6=i,n xk < xi. It follows that the expected contribution of

agent i is

τ i
i (c, x′) =

1

2

{
max{0, ci −

∑
k 6=i,n

x′k}+ (x′i + x′n)−max{0, cn −
∑
k 6=i,n

x′k}

}

=
1

2

{
max{0, ci −

∑
k 6=i,n

xk}+ (xi + xn)−max{0, cn −
∑
k 6=i,n

xk}

}

<
1

2

{
xi + (xi + xn)− cn +

∑
k 6=i,n

xk

}
< xi.
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Thus, agent i is better off by deviating. This violates the supposition that g
is a subgame perfect equilibrium of Γ (N, c). We conclude that x ∈ X (N, c).

We next show that x = CEB (N, c). Suppose, by contradiction, that
x 6= CEB (N, c). Then, by converse consistency, there exists i 6= n such

that x{i,n} 6= CEB
(
{i, n} , ucx{i,n}

)
. Note that

(
ucx{i,n}

)
n

= cn−
∑

k 6=i,n xk =

xi + xn. There are two possibilities: either CEBn

(
{i, n} , ucx{i,n}

)
< xn or

CEBi

(
{i, n} , ucx{i,n}

)
< xi. Suppose that CEBn

(
{i, n} , ucx{i,n}

)
< xn.

In this case, agent n has incentive to deviate in Stage 2 by taking ac-
tion R and picking agent i, and since x ∈ X(N, c), by Lemma 2, agent

n ends up with the expected contribution CEBn

(
{i, n} , ucx{i,n}

)
. Thus,

agent n is better off by deviating. This violates the supposition that g
is a subgame perfect equilibrium of the game Γ (N, c). Suppose now that

CEBi

(
{i, n} , ucx{i,n}

)
< xi. In this case, agent i has incentive to deviate in

Stage 1 by proposing CEBi

(
{i, n} , ucx{i,n}

)
. We next show that agent i will

end up with contribution CEBi

(
{i, n} , ucx{i,n}

)
. If in Stage 2, agent n takes

action A, then agent i ends up with contribution CEBi

(
{i, n} , ucx{i,n}

)
. If

in Stage 2, agent n takes action R and picks agent k ∈ N\{i, n}, then agent

i ends up with contribution CEBi

(
{i, n} , ucx{i,n}

)
. If in Stage 2, agent n

takes action R and picks agent i, then let x′ be the binding proposal in-
duced by agent i’s deviation. It can be shown that τ i

i(c, x
′) = τ i

i(c, x).

Since x ∈ X(N, c), by Lemma 2, τ i
i(c, x) = CEBi

(
{i, n} , ucx{i,n}

)
. Thus,

τ i
i(c, x

′) = CEBi

(
{i, n} , ucx{i,n}

)
. It follows that agent i still ends up with

contribution CEBi

(
{i, n} , ucx{i,n}

)
. We conclude that in either case, agent i

is better off by deviating. This violates the supposition that g is a subgame
perfect equilibrium of the game Γ (N, c). Thus, x = CEB(N, c).

Case 2: Agent n takes action R by following gn. Assume that agent
n takes action R and picks an agent, say agent i, in Stage 2. Let y =(
τ i (c, x) , xN\{i,n}

)
be the outcome of the game. We show that y = CEB (N, c).

If |N | = 2, then y = τ i (c, x) = (1
2
ci, cn − 1

2
ci) = CEB (N, c). We are done.

Let |N | ≥ 3. We first show that x ∈ X(N, c). If x is not in X(N, c), then
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there exists k ∈ N\{n} such that xk > 0. If k ∈ N\{i, n}, then agent k will
deviate by proposing 0 in Stage 1 as agent i does in Case 1. We then derive
that agent k will be better off by deviating, which violates the supposition
that g is a subgame perfect equilibrium of the game Γ (N, c). If k = i, then
agent n will be better off by taking action A and ending up with contribu-
tion xn. To see this, we consider two situations: either cn −

∑
j 6=k,n xj < 0

or cn −
∑

j 6=k,n xj ≥ 0. If cn −
∑

j 6=k,n xj < 0, then τ k
k(c, x) = 1

2
(xk + xn).

It follows that yn = τ k
n(c, x) = xk + xn − τ k

k(c, x) = 1
2

(xk + xn). Note that
xn < 0 < xk. Thus, yn > xn. It follows that agent n is better off by devi-
ating. If cn −

∑
j 6=k,n xj ≥ 0, then it can be shown, as in Subcase 1.2, that

τ k
k(c, x) < xk. Thus, yn = τ k

n(c, x) = xk + xn − τ k
k(c, x) > xn. Agent n

is better of by deviating. Thus, in either case, the supposition that g is a
subgame perfect equilibrium of the game Γ (N, c) is violated. We next show
that y = CEB(N, c). Consider the following two subcases.

Subcase 2.1: For each j ∈ N\ {i, n}, xj = 0. Then, y{i,n} = τ i (c, x) =(
1
2
ci, cn − 1

2
ci
)
. We now consider the following two situations.

• For each j ∈ N\ {i, n}, cj ≤ ci

2
. To solve

∑
k∈N CEBk(N, c) =

cn, β ∈ R+ in the definition of the CEB rule must be ci

2
. Thus,

CEB (N, c) =
(

1
2
ci, cn − 1

2
ci, 0N\{i,n}

)
. It follows that y = CEB(N, c).

• For some j ∈ N\ {i, n}, cj >
ci

2
. We show that this situation never

happens in the equilibrium. Consider the case when ci = 0. Since
y{i,n} =

(
1
2
ci, cn − 1

2
ci
)
. Thus, yn = cn. Note that i 6= n, ci = 0, and

0 ≤ xi ≤ ci. Thus, xi = 0. It follows that xn = cn and for each
k ∈ N\{n}, xk = 0. Thus,

τ j
j (c, x) =

1

2

{
max{0, cj −

∑
k 6=j,n

xk}+ xj + xn −max{0, cn −
∑
k 6=j,n

xk}

}

=
1

2
(cj + cn − cn)

=
cj
2

.

Agent n can deviate by picking agent j 6= i in Stage 2 and obtain
the expected contribution τ j

n (c, x) = xj + xn − τ j
j (c, x) = cn − 1

2
cj,

which is less than cn. Agent n is better off by deviating. It violates
the supposition that g is a subgame perfect equilibrium of the game
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Γ (N, c). We next consider the case when ci > 0. Then agent i can
deviate by proposing a real number 1

2
ci − ε, where

0 < ε < min{cj −
ci
2
,
ci
2
}.

Let x′ be the binding proposal induced by agent i’s deviation. Note
that x′i = ci

2
−ε, x′n = cn− ci

2
+ε, and for each j ∈ N\{i, n}, x′j = xj = 0.

Suppose that agent n picks agent j in Stage 2. Note that yn = cn and
τ j

j(c, x
′) = 1

2
(cj− 1

2
ci +ε). Then, agent n obtains the following expected

contribution

τ j
n (c, x′) = x′j + x′n − τ

j
j (c, x′)

= cn −
1

2

(
cj +

1

2
ci − ε

)
= yn −

1

2

(
cj +

1

2
ci − ε

)
< yn.

Thus, agent n will pick agent j, rather than agent i, in Stage 2. In
this case, agent i will end up with contribution 1

2
ci − ε, which is less

than ci

2
. Thus, agent i will be better off by deviating. This violates

the supposition that g is a subgame perfect equilibrium of the game
Γ (N, c).

Subcase 2.2: For some j ∈ N\ {i, n}, xj > 0. Since y is the outcome
of the game Γ (N, c), by subgame perfection, for each k ∈ N\ {i, n}, yn ≤
τ k

n (c, x). We then consider two possible situations.

• For each k ∈ N\ {i, n}, yn < τ k
n (c, x). We show that this situa-

tion never happens in the equilibrium. Let 0 < ε < min {τ j
n (c, x)− yn, xj}.

Suppose that agent j deviates by proposing xj − ε. Let x′ be the bind-
ing proposal induced by agent j’s deviation. Since x ∈ X(N, c), then
max{0, cn −

∑
k 6=i,n xk} = xi + xn ≥ 0. Thus,

τ i
i (c, x) =

1

2

{
max{0, ci −

∑
k 6=i,n

xk}+ xi + xn −max{0, cn −
∑
k 6=i,n

xk}

}

=
1

2
max{0, ci −

∑
k 6=i,n

xk}.
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Note that yn = τ i
n(c, x) = xi + xn − τ i

i(c, x). Thus, yn = xi + xn −
1
2

max{0, ci −
∑

k 6=i,n xk}. Note that x ∈ X(N, c), x′j = xj − ε, x′n =
xn + ε, and for each k ∈ N\{j, n}, x′k = xk. Clearly, x′ ∈ X (N, c).
Thus, τ i

i(c, x
′) = 1

2
max{0, ci −

∑
k 6=i,n x

′
k}. It follows that

τ i
n (c, x′) = xi + xn + ε− 1

2
max

{
0, ci −

∑
k 6=i,n

xk + ε

}
≤ yn + ε

< min
{
τ j

n (c, x) , xj + yn

}
≤ τ j

n (c, x) .

Then, agent n will not pick agent j in Stage 2. Thus, agent j will
end up with contribution xj − ε, which is less than xj. Agent j will
be better off by deviating. This violates the supposition that g is a
subgame perfect equilibrium of the game Γ(N, c).

• For some k ∈ N\ {i, n}, yn = τ k
n (c, x). If y{i,n} = x{i,n}, then

y = x. We first show that x = CEB(N, c), and then conclude that y =
CEB(N, c). Suppose, by contradiction, that x 6= CEB(N, c). Then, by
converse consistency of the CEB rule, there is k 6= n such that x{k,n} 6=
CEB

(
{k, n}, ucx{k,n}

)
. Thus, either xn > CEBn

(
{k, n}, ucx{k,n}

)
or

xk > CEBk

(
{k, n}, ucx{k,n}

)
. If xn > CEBn

(
{k, n}, ucx{k,n}

)
, then

in Stage 2, agent n will deviate by picking agent k and end up with

contribution CEBn

(
{k, n}, ucx{k,n}

)
. Thus, agent n is better off by de-

viating. If xk > CEBk

(
{k, n}, ucx{k,n}

)
, then in Stage 1, agent k will

deviate by proposing CEBk

(
{k, n}, ucx{k,n}

)
. By a similar argument

as that for when xi > CEBi

(
{i, n}, ucx{i,n}

)
in Case 1, it can be shown

that agent k will end up with contribution CEBk

(
{k, n}, ucx{k,n}

)
.

Thus, agent k is better off by deviating. It follows that in either case,
the supposition that g is a subgame perfect equilibrium of the game
Γ(N, c) is violated. Thus, x = CEB(N, c). Now, let’s consider when
y{i,n} 6= x{i,n}. We show that agent i will be better off by deviating,
and thus the supposition that g is a subgame perfect equilibrium of the
game Γ(N, c) is violated. Since y is the outcome of the game Γ (N, c),
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by subgame perfection, yn < xn. Note that
∑

i∈N xi =
∑

i∈N yi and
yN\{i,n} = xN\{i,n}. Thus, xi < yi. Since x ∈ X(N, c), by Lemma 2,

y = τ i(N, c) = CEB
(
{i, n}, ucx{i,n}

)
. Note that by order preservation

for contributions of the CEB rule, 0 < yi ≤ yn. Suppose that agent
i deviates by proposing xi + ε, where 0 < ε < min{yi − xi, xn}. Let
x′ be the binding proposal induced by agent i’s deviation. Note that
x′i = xi + ε, x′n = xn − ε, and for each l ∈ N\{i, n}, x′l = xl. Thus,
x′ ∈ X (N, c). Thus, τ k

k(c, x′) = 1
2

max{0, ck −
∑

l 6=k,n x
′
l}. It follows

that

τ k
n (c, x′) = xk + xn − ε−

1

2
max

{
0, ck −

∑
l 6=k,n

xl − ε

}

= xk + xn −
1

2
max

{
2ε, ck −

∑
l 6=k,n

xl + ε

}

< xk + xn −
1

2
max

{
0, ck −

∑
l 6=k,n

xl

}
= τ k

n (c, x)

= yn

= τ i
n (c, x)

Agent n will not pick agent i in Stage 2. It follows that agent i will
end up with contribution xi + ε, which is less than yi. Agent i is then
better off by deviating.

By Subcases 2.1 and 2.2, we obtain that y = CEB (N, c). Thus, by Cases
1 and 2, we complete the proof. Q .E .D .
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