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A B S T R A C T

The procurement auction scheme for long-term photovoltaic (PV) energy contracts is being implemented in
various countries to ensure stable profits for potential PV generators. However, in most of these auction
formats, there is a deficiency in that they consider only the contract price and capacity, neglecting to account
for the uncertainty of generation efficiency. In this regard, this study proposes a procurement auction scheme
for long-term photovoltaic (PV) energy contracts based on mechanism design theory. We developed a two-
dimensional auction model in which PV generators bid their cost and capacity. The energy buyer then
determines the winners and enters into contracts with them for a fixed period. We incorporated the capacity
factor into the payoff functions of both the buyer and the sellers to reflect different generation efficiencies of
generators. Following the revelation principle, we characterized the incentive-compatible, individually rational
direct mechanism that maximizes the buyer’s expected payoff during the contract period. We also proposed a
computation algorithm to implement the auction. Numerical analysis using data from the Korean PV auction
market suggested that the proposed model demonstrates results similar to the uniform price auction in terms
of the levelized cost of electricity and contract price, and these results are lower than those of the Vickrey
auction. Furthermore, despite the fact that the proposed auction results in a slight increase in social costs
(approximately 1% more than the Vickrey auction), it maximizes the expected procured electricity and the
auctioneer’s payoff.
which becomes a barrier that hinders potential PV generators from
entering the electricity market [4].

To deal with this problem, many countries are now implementing
1. Introduction

In the midst of the ongoing trend towards an increase of renewable
energy (RE)-based electricity generation, photovoltaic (PV) energy has
achieved the fastest growth due to its advantages of convenient installa-
tion and low maintenance cost. In 2021, the global PV power capacity
increased by 140 GW, accounting for 60% of the newly installed RE
capacity [1]. The amount of generated electricity also increased from
1.0 EJ (1018 J) in 2011 to 5.4 EJ in 2021 [2]. Along with this trend
of the energy transition, the RE generation of Korea also shows a fast
increase from 3 million toe1 in 2012 to 12 million toe in 2020, where
PV energy took the largest share at 34% [3]. However, despite the
advantages of PV energy, its generation is constrained by solar irradia-
tion, resulting in high volatility depending on regional characteristics,
climate uncertainty, and seasonal influences. These physical limitations
of PV energy generation expose PV generators to uncertain investment,
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various support policies such as Feed-in-Tariff (FiT) and Renewable
Portfolio Standard (RPS), both of which aim to preserve the prof-
itability of PV generators by purchasing their electricity at a price
premium (FiT) or issuing a certificate that allows them to obtain
additional income (RPS) [5]. These subsidies result in producers re-
ceiving payments beyond the price in the wholesale electricity market.
However, a challenge arises in determining the appropriate level of
this premium. To address this issue, procurement auction mechanisms
between PV generators and the energy buyer have been recently paid
much attention, which allows the premium to be determined with the
spontaneous offers by generators [6].

In this auction, the generators bid their desired contract capacity
and electricity price, and the winners to be decided by some specific
auction rules have the right to sell their entire amount of solar power
at a fixed contract price for a long period of time (10–20 years).
This auction system is being conducted for renewable energy (RE)
November 2023
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Fig. 1. Capacity factors of some regions of Korea in 2021.
resources in various countries, and the most prevalent auction rule
is to determine the winners based on their bid price [7]. In the case
of Korea, the long-term contract auction scheme for RE is currently
being implemented only for PV energy generators. PV generators with a
capacity ranging from 3 kW to over 20 MW are eligible to participate in
the auction under the current scheme. The winner determination rule
for the Korean PV auction is also based on the bid price submitted by
bidders, and the bid price becomes the contract price of the winning
bidders [8].

This price-based auction rule aims to secure PV energy supply at the
possibly lowest cost and it is most prevalent because of its simplicity of
implementation. Accordingly, there exist various studies on the bidding
strategies of generators under this price-based rule [9,10]. However,
considering that the purpose of implementing these PV auctions is to
secure and expand PV generation rather than simply procuring electric-
ity at a lower cost, this cost-minimizing approach to selecting winning
bidders based solely on bid price may not be appropriate. Instead, it
is necessary to employ a more complex approach that considers PV
generation efficiency as well as bid price to ensure that solar power
can be procured efficiently. Therefore, this study suggests incorporating
generation efficiency as a key element in the auction, which has not
been considered in previous research.

There are several indicators that measure the power generation effi-
ciency of energy resources. Among them, the capacity factor represents
the ratio of the actual generation of energy resources to the maximum
possible amount that could be generated in a given time period [11].
The capacity factor of PV energy is affected by regions, weather, and
the quality of panels, and it generally ranges from 10% to 25%. Fig. 1
illustrates the different values of capacity factors in several regions in
Korea. Seoul is in the northern region, Daejeon is in the central region,
and Jeju is in the southern area of Korea [12]. The average capacity
factors are shown to be different by region. Given that the current price-
based auction system cannot differentiate between bidders who bid the
same capacity and price but have different efficiencies, it is necessary to
design an enhanced auction scheme that also could consider generation
efficiency by estimating the capacity factor of each bidder with a proper
method. Towards this end, the mechanism design theory can be applied
to design a proper PV long-term procurement auction that maximizes
the auctioneer’s benefits from the PV procurement and satisfies several
desirable properties, such as making the bidders report their true values
and participate in the auction voluntarily.

In this study, we propose an optimal procurement auction scheme
for PV long-term contracts using the two-dimensional auction model
in which the energy buyer makes contracts for a specified capacity and
the bidders bid their costs and contract capacities. The auction model in
this study addresses the energy buyer’s goal of maximizing payoff while
considering the constraints of incentive compatibility and individual
rationality for PV generators. Additionally, we consider the uncertainty
2

of PV generation by estimating the capacity factors of PV generators
and reflecting the estimated values in the payoff functions of the buyer
and sellers.

The contributions of this study to the current literature are as
follows:

• First, we figure out the optimal allocation rule and pricing rule
of the two-dimensional procurement auction in which bidders
bid their contract price and capacity. We demonstrate that the
proposed model satisfies the required properties in mechanism
design even when capacity overbidding is allowed.

• Second, we propose a new auction rule that enables the buyer
to identify favorable bidders by considering the bidders’ expected
generation efficiency. To this end, we suggest a proper evaluation
method that integrates the efficiency levels and bid information
of the bidders.

• Lastly, considering the implementation issue, we proposed a dis-
criminatory auction scheme suitable for PV long-term contracts,
the most popular support scheme for renewable energy genera-
tors, by suggesting an efficient computation algorithm.

The rest of this paper is organized as follows. In Section 2, we
review the previous research related to the theory of payoff maximizing
auctions and its application to the energy sector. In Section 3, the
economic environment of the auction is presented. In Section 4, the
optimal allocation rule and pricing rules are derived from several char-
acterizations of the proposed mechanism. In Section 5, the estimation
of capacity factors and numerical analysis are presented. In Section 6,
we conclude the paper. All proofs of the propositions are presented
in Appendix.

2. Literature review

The procurement mechanism for the PV long-term contracts in-
volves several characteristics. First, the optimality of the auction for
the buyer should be guaranteed. Second, the bidders have multidi-
mensional attributes. Third, they have limited capacity to produce
electricity. In this respect, we first review the related works in mech-
anism design theory, which stem from the characterization of the
optimal auction as suggested by Myerson [13]. Subsequently, we briefly
review the recent research that investigates the auction scheme for
supporting renewable energy generation.

After Myerson [13] initially proposed the optimal auction to max-
imize the seller’s expected revenue, characterizing the optimal auc-
tion rule for one-dimensional bidder types, this approach has become
fundamental in the design of optimal auction rules. Concerning the
analysis of a multi-dimensional environment, Che [14] presented the
model where bidders report both quality and cost and showed that
the first and second-scoring auctions implement the optimal mecha-
nism. Maskin et al. [15] came up with the monopolist’s nonlinear pric-

ing problem in this two-dimensional setting. Furthermore, Asker and
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Cantillon [16] characterized the optimal auction with two-dimensional
type space, where each bidder has private information about their fixed
cost and marginal cost.

Another aspect inspired by Myerson’s work is the optimal auction
for a multi-unit environment. Maskin and Riley [17] generalized the
optimal auction for multi-unit homogeneous items based on symmetric,
independent, and risk-neutral bidder assumptions. The work of Iyengar
and Kumar [18] is the most similar work to our research, as they
presented a model where the buyer intends to procure divisible goods
from producers with limited capacity. The model depicts each bidder’s
type as the production capacity and cost. But, their approach has
a limitation in assuming that bidders cannot overbid their capacity.
Gautam et al. [19] extended Iyengar and Kumar [18] by considering
volume discounts, and they revealed several properties in this set-
ting. Meanwhile, the work of Malakhov and Vohra [20,21] handled
the multi-dimensional type space of bidders as discrete values and
reformulated the problem as linear programming of the shortest path
problem.

The theoretical work on optimal auction design for multi-unit items
with multi-dimensional type spaces has found applications in sev-
eral industrial fields. Prasad and Rao [22] designed an optimal two-
dimensional auction for resource allocation in cloud computing, where
cloud vendors bid on both their cost and quality of service. Chat-
zopoulos et al. [23] applied the auction framework to smart contracts
on a blockchain, designing a cost-minimizing auction scheme for an
Internet service provider who selects contractors based on their cost
and task-of-interest as part of the type space. Also, Bhat et al. [24]
designed an optimal two-dimensional procurement auction where the
buyer’s reward is stochastic and suggested the algorithm to compute the
mechanism outcome of Iyengar and Kumar [18]. While there have been
several studies exploring the application of two-dimensional auction
design, relatively few attempts have been made to design an optimal
auction for renewable energy support schemes.

However, our research can be justified by examining studies that
apply mechanism design to other renewable energy and power mar-
kets. Kreiss et al. [10] applied a simple first-price and second-price
auction format to a general renewable energy auction with a risk
of non-realization by winning bidders, revealing that physical and
financial pre-qualifications can achieve a high realization rate. Addi-
tionally, Matthäus et al. [25] modeled PV generation uncertainty as
a real option and analyzed the non-realization behaviors of winning
bidders. Khazaei and Zhao [9] addressed the problem of aggregating
uncertain renewable energy by designing an efficient indirect mecha-
nism for an aggregator receiving information from renewable energy
producers. Kröger et al. [26] designed a discriminatory auction for
onshore wind, considering the spatial characteristics of the generators,
and their simulation demonstrated a reduction in consumer costs of
approximately 13%. While not directly related to renewable energy
support schemes, Zou et al. [27] developed an optimal mechanism for
operating a distributed energy system using Myerson’s model, which
shares similarities with the model we propose.

In addition to efforts in designing renewable energy auctions at a
theoretical level, there have been studies evaluating ongoing renewable
energy auctions through data analysis. For example, Batz Liñeiro and
Müsgens [28] decomposed German onshore wind auction data into
individual levels and examined which design elements of the auction
influenced the success or failure of the auctions. Diniz et al. [29] inves-
tigated the effect of auction design elements using project-level auction
data from Brazil, finding that a preliminary transmission capacity phase
in an auction improves outcomes. Fleck and Anatolitis [30] scrutinized
269 auction rounds from 20 European countries and discovered that
not all conducted auctions align with the results of theoretical work.
3
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3. Model

3.1. Auction environment

We consider the PV generation market, in which potential PV
generators seek to enter into a long-term contract with an energy buyer
to supply energy for 𝑇 periods. The market comprises 𝑛 PV generators
(sellers) indexed by 𝑖 ∈ 𝐼 ∶= {1, 2,… , 𝑛} and one buyer. Each generator
𝑖 has private information regarding its desired PV capacity 𝐾𝑖 ∈ [0, �̄�]
or the contract and the cost 𝑐𝑖 ∈ [𝑐, 𝑐] to purchase and maintain

one unit of PV panel. Here, 𝑐𝑖 can be interpreted as the total cost of
ownership.2 Therefore, the total cost for operating 𝐾𝑖 units of panels
equals 𝑐𝑖𝐾𝑖. We denote the type of generator 𝑖 as 𝑏𝑖 ∶= (𝑐𝑖, 𝐾𝑖), 𝑏 = (𝑏𝑖)𝑖∈𝐼
as the type profile, and B = ([𝑐, 𝑐] × [0, �̄�])𝑛 as the type space. Prior to
actual generation, the total expected electricity generated by generator
𝑖 during 𝑇 periods can be computed as
𝑇
∑

𝑡=1

[

(1 − 𝑑)𝑡 ×𝐻 × 𝜂𝑡𝑖
]

×𝐾𝑖, (1)

where 𝐻 represents the total hours of a unit period, 𝑑 is the average
egradation rate of PV panels, and 𝜂𝑡𝑖 is the expected capacity factor of
V panels for generator 𝑖 during period 𝑡, estimated before the auction
egins. The expected capacity factor 𝜂𝑡𝑖 represents the efficiency of PV
anels owned by generator 𝑖 during period 𝑡, and it varies among PV
enerators and over time due to geographic and climatic conditions.
o compute the expectations before the auction, the information and
ethods used for predicting each generator’s capacity factor are made

vailable to all market participants. Therefore, the sequence
[

𝜂𝑡𝑖
]𝑇
𝑡=1 for

ll generators is considered public information.
Along with the Bayesian game structure, generator 𝑖 cannot know

he types of other generators, 𝑏−𝑖 = (𝑐𝑗 , 𝐾𝑗 )𝑗∈𝐼⧵{𝑖}. Each generator
reats the type of the other generator 𝑏𝑗 as a random variable with
𝑗 (𝑐𝑗 , 𝐾𝑗 ) as the joint cumulative distribution function and 𝑓𝑗 (𝑐𝑗 , 𝐾𝑗 ) as
he joint density function. Besides, we assume that the type of each
idder is independent of the others. The buyer aims to enter into
ontracts with the PV generators for a maximum capacity of �̃� units
hrough the auction. The contract lasts for 𝑇 periods, during which the
uyer should purchase all the electricity generated by the contracted
V generators. One unit of electricity generated by PV will benefit the
uyer by reducing the cost of thermal power generation, denoted as 𝑐0.

Furthermore, we assume that the buyer can infer the actual operat-
ng capacity of the contracted generator without incurring additional
bservation costs, and the buyer can observe the true capacity of a
mall number of winning bidders at a negligible cost. These assump-
ions will assist us in constructing a commitment rule to prevent bidders
rom engaging in overbidding behaviors.

.2. Procurement mechanism

In this section, we define the procurement auction and the payoff
unction of the PV generators, with several properties that the mecha-
ism should satisfy. Using the revelation principle [13], we restrict our
onsideration to a direct mechanism. Let 𝛤 = (𝑎, 𝑝) be a procurement
echanism, where 𝑎(𝑏) =

(

𝑎𝑖(𝑏)
)

𝑖∈𝐼 ∶ B → R𝑛
+ is an allocation rule,

nd 𝑝(𝑏) =
(

𝑝𝑖(𝑏)
)

𝑖∈𝐼 ∶ B → R𝑛
+ is a pricing rule. Note that 𝑎𝑖(𝑏) and

𝑖(𝑏) describe bidder 𝑖’s capacity to be contracted and the unit price
f electricity generated. If the energy buyer and bidder 𝑖 enter into a
ontract after the auction with (𝑎𝑖, 𝑝𝑖), the entire electricity generated
rom the PV panel with a capacity of 𝑎𝑖 will be sold at the unit price
𝑖. After the procurement mechanism 𝛤 = (𝑎, 𝑝) is implemented, the
inner of the auction is expected to generate

[

(1 − 𝑑)𝑡 ×𝐻 × 𝜂𝑡𝑖
]

𝑎𝑖(𝑏)
nits at period 𝑡 and receive 𝑝𝑖(𝑏) for each unit. Then, bidder 𝑖’s ex-post

2 Total cost of ownership is an estimation of the overall cost associated with
urchasing, maintaining, and retiring a product over its entire lifecycle.
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payoff is defined as the expected present value of the contract. When
bidder 𝑖 reports (𝑐𝑖, �̂�𝑖) but its true type is (𝑐𝑖, 𝐾𝑖), its ex-post payoff is
efined as

𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖, 𝑏−𝑖) =
[

𝛼𝑖𝑝𝑖((𝑐𝑖, �̂�𝑖), 𝑏−𝑖) − 𝑐𝑖
]

𝑎𝑖((𝑐𝑖, �̂�𝑖), 𝑏−𝑖). (2)

ere, 𝛼𝑖 =
∑𝑇

𝑡=1
(1−𝑑)𝑡×𝐻×𝜂𝑡𝑖

(1+𝑟)𝑡 and 𝑟 is a discount rate. Furthermore, if
e consider a sealed-bid auction, the bidders do not know the other
idders’ types at the bidding stage. Therefore, bidder 𝑖 would behave
o maximize the interim payoff. When bidder 𝑖 reports (𝑐𝑖, �̂�𝑖) but its
rue type is (𝑐𝑖, 𝐾𝑖), its interim payoff can be defined as follows.

𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖) = E𝑏−𝑖

[

𝑢𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖, 𝑏−𝑖)
]

. (3)

or convenience, denote the interim payoff of bidder 𝑖 when the bidder
eports its type truthfully as 𝑈𝑖(𝑐𝑖, 𝐾𝑖) ∶= 𝑈𝑖(𝑐𝑖, 𝐾𝑖|𝑐𝑖, 𝐾𝑖).

Meanwhile, the sole buyer, who wishes to secure �̃� units of PV ca-
acity through this procurement auction, must find a direct revelation
echanism 𝛤 that maximizes its expected payoff, denoted as 𝛱(𝛤 ). The
rocurement of electricity from bidder 𝑖 provides a benefit of 𝑐0, and
he buyer must pay 𝑝𝑖(𝑏). If we define the buyer’s payoff function as
he expected present value of the PV long-term contract procurement
uction with a discount rate 𝑟, the buyer’s optimization problem can be
ormulated as follows.

ax
𝛤

𝛱(𝛤 ) = E𝑏

[ 𝑛
∑

𝑖=1
𝛼𝑖(𝑐0 − 𝑝𝑖(𝑏))𝑎𝑖(𝑏)

]

(4)

s.t. (𝑐𝑖, 𝐾𝑖) ∈ argmax
(𝑐𝑖 ,�̂�𝑖)∈[𝑐,𝑐]×[0,�̄�]

{𝑈𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖)}, ∀𝑖 ∈ 𝐼, (5)

𝑈𝑖(𝑐𝑖, 𝐾𝑖) ≥ 0, ∀𝑖 ∈ 𝐼, (6)

0 ≤ 𝑎𝑖(𝑏𝑖, 𝑏−𝑖) ≤ 𝐾𝑖, ∀𝑖 ∈ 𝐼, (7)
𝑛
∑

𝑖=1
𝑎𝑖(𝑏) ≤ �̃�. (8)

There are several properties that we require the mechanism 𝛤 =
𝑎, 𝑝) to satisfy. Constraint (5) indicates that the truthful bidding strat-
gy should be a Bayesian Nash equilibrium because we focus on the
irect revelation mechanism. This constraint is known as Bayesian
ncentive compatibility (BIC). Constraint (6) means that the mechanism
hould ensure that every generator in the market participates in the
uction voluntarily, also known as individual rationality (IR). Lastly,
onstraint (7) implies that the allocation amount of each bidder is non-
egative and cannot exceed its capacity. We define this constraint as
easibility. Then, denote the optimal solution to the above problem as
∗ = (𝑎∗, 𝑝∗). We refer to 𝛤 ∗ = (𝑎∗, 𝑝∗) as the optimal procurement
echanism.

. Analysis

.1. Characterization

In this section, we present the characterization of the buyer’s prob-
em with an analogy to Myerson [13] and Iyengar and Kumar [18]. To
his end, we define the expected allocation of bidder 𝑖 as 𝐴𝑖(𝑐𝑖, �̂�𝑖) =
𝑏−𝑖

[

𝑎𝑖
(

(𝑐𝑖, �̂�𝑖), 𝑏−𝑖
)]

, when the bidder reports its type as (𝑐𝑖, �̂�𝑖). Then,
f the procurement auction satisfies the BIC condition, we can obtain
he following lemma.

emma 1. If 𝛤 = (𝑎, 𝑝) is an incentive compatible mechanism, then

(a) ∀𝑖 ∈ 𝐼 , 𝐴𝑖(𝑐𝑖, 𝐾𝑖) is non-increasing in 𝑐𝑖 for fixed 𝐾𝑖;
(b) 𝑈𝑖(𝑐𝑖, 𝐾𝑖) = 𝑈𝑖(𝑐, 𝐾𝑖) + ∫ 𝑐

𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏.

Part (a) of Lemma 1 implies that the expected allocated capacity of
very bidder decreases as its bidding cost increases. Also, part (b) of
emma 1 corresponds to the revenue equivalence theorem, implying
4

hat the interim utility is determined solely by the expected allocation
or any mechanism satisfying BIC. Using this fact, we can obtain the
ollowing theorem.

heorem 1. If a direct mechanism 𝛤 = (𝑎, 𝑝) is incentive compatible, the
xpected payoff of the buyer (or auctioneer), 𝛱(𝛤 ), has the form of

(𝛤 ) = E𝑏

[ 𝑛
∑

𝑖=1
𝐻𝑖(𝑐𝑖, 𝐾𝑖)𝑎𝑖(𝑏𝑖, 𝑏−𝑖)

]

−
𝑛
∑

𝑖=1
𝑈𝑖(𝑐, 𝐾𝑖), (9)

here 𝐻𝑖(𝑐𝑖, 𝐾𝑖) = 𝛼𝑖𝑐0 −
(

𝑐𝑖 +
𝐹𝑖(𝑐𝑖|𝐾𝑖)
𝑓𝑖(𝑐𝑖|𝐾𝑖)

)

. We refer 𝐻𝑖(𝑐𝑖, 𝐾𝑖) as the virtual
marginal profit from generator 𝑖.

Theorem 1 possesses an important property for finding the optimal
allocation and pricing rule: while the original problem involves two
types of decision variables, 𝑎 and 𝑝, the modified problem only has one
type of decision variable, 𝑎. Therefore, the only remaining aspect in
solving the buyer’s problem is to find the optimal allocation rule.

4.2. Optimal mechanism

In this section, we present the optimal procurement mechanism
𝛤 ∗ = (𝑎∗, 𝑝∗) under the regularity condition, which we define here. To
this end, we first examine the relaxed problem where 𝐻𝑖(𝑐𝑖, 𝐾𝑖) of all
bidders are known to the buyer, and the non-increasing property of
the optimal expected allocation is relaxed. It is worth noting that since
𝑈𝑖(𝑐, 𝐾𝑖) ≤ 𝑈𝑖(𝑐𝑖, 𝐾𝑖) for every (𝑐𝑖, 𝐾𝑖) by Lemma 1, it is obvious that the
optimal mechanism should satisfy 𝑈𝑖(𝑐, 𝐾𝑖) = 0. Using these facts and
Theorem 1, constraints (5) and (6) are integrated into the objective
function, and the buyer’s problem is relaxed as follows.

max
𝑎

𝑛
∑

𝑖=1
𝐻𝑖(𝑐𝑖, 𝐾𝑖)𝑎𝑖(𝑏𝑖, 𝑏−𝑖) (10)

s.t. (7), (8)

The buyer can arrange the bidders in descending order of 𝐻𝑖(𝑐𝑖, 𝐾𝑖)
using a mapping 𝜉 ∶ 𝐼 → 𝐼 with the following property.

𝜉(𝑖)(𝑐𝜉(𝑖), 𝐾𝜉(𝑖)) ≥ 𝐻𝜉(𝑗)(𝑐𝜉(𝑗), 𝐾𝜉(𝑗)) whenever 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 (11)

Without loss of generality, assume that 𝐻𝑖(𝑐𝑖, 𝐾𝑖) ≥ 0 for every
idder 𝑖 ∈ 𝐼 , and 𝐻𝑖(𝑐𝑖, 𝐾𝑖) ≠ 𝐻𝑗 (𝑐𝑗 , 𝐾𝑗 ) whenever 𝑖 ≠ 𝑗. Let 𝑙∗ be

the positive integer satisfying ∑𝑙∗−1
𝑖=1 𝐾𝜉(𝑖) ≤ �̃� ≤

∑𝑙∗
𝑖=1 𝐾𝜉(𝑖). Define

𝜉−1(𝑖 ∶ (𝑐𝑖, 𝐾𝑖), 𝑏−𝑖) as the ranking of bidder 𝑖 when its type is (𝑐𝑖, 𝐾𝑖),
nd the others are 𝑏−𝑖. The optimal solution to the relaxed problem can
e described as follows.

emma 2. The optimal allocation rule 𝑎∗ for the relaxed problem with the
bjective function presented in (10) is

∗
𝑖 (𝑏) =

⎧

⎪

⎨

⎪

⎩

𝐾𝑖 if 𝜉−1(𝑖 ∶ (𝑐𝑖, 𝐾𝑖), 𝑏−𝑖) < 𝑙∗

�̃� −
∑𝑙∗−1

𝑖=1 𝐾𝜉(𝑖) if 𝜉−1(𝑖 ∶ (𝑐𝑖, 𝐾𝑖), 𝑏−𝑖) = 𝑙∗

0 if 𝜉−1(𝑖 ∶ (𝑐𝑖, 𝐾𝑖), 𝑏−𝑖) > 𝑙∗
(12)

The optimal allocation rule is to accept offers in order of bid-
ers’ virtual marginal profits until the contracted capacity exceeds the
redetermined amount �̃�. Additionally, since the allocation rule is a
oint-wise maximizer for each 𝑏 ∈ B and the expected payoff of the
uyer is a convex combination of every 𝑓 (𝑏), it follows that 𝑎∗ ∈
rgmax𝑎 E𝑏[

∑𝑛
𝑖=1 𝐻𝑖(𝑐𝑖, 𝐾𝑖)𝑎𝑖(𝑏𝑖, 𝑏−𝑖)].

To guarantee that the optimal allocation rule 𝑎∗ in the relaxed prob-
em is also optimal in the original problem, we need to demonstrate that
∗
𝑖 (𝑏𝑖) ∶= E𝑏−𝑖

[

𝑎∗𝑖 (𝑏𝑖, 𝑏−𝑖)
]

is non-increasing in 𝑐𝑖. To this end, we will
ocus on the type space that satisfies the following regularity condition.

ssumption 1 (Regularity Condition). 𝐹𝑖(𝑐𝑖|𝐾𝑖)
𝑓𝑖(𝑐𝑖|𝐾𝑖)

is non-decreasing in 𝑐𝑖 and
non-increasing in 𝐾 for all 𝑖 ∈ 𝐼 .
𝑖
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The monotonicity for 𝑐𝑖 holds when the reverse hazard rate 𝑓𝑖(𝑐𝑖|𝐾𝑖)
𝐹𝑖(𝑐𝑖|𝐾𝑖)

s non-increasing in 𝑐𝑖, and the monotonicity for 𝐾𝑖 holds if 𝑐𝑖 and 𝐾𝑖 are
ffiliated.3 Under the regularity condition, it can be directly observed
hat the virtual marginal profit 𝐻𝑖(𝑐𝑖, 𝐾𝑖) is non-increasing with respect
o 𝑐𝑖 and non-decreasing with respect to 𝐾𝑖. Therefore, the ranking of
idder 𝑖, i.e., 𝜉−1(𝑖), preserves these monotonic properties. Hence, we
an obtain the following Lemma 3, which includes the non-increasing
roperty of the optimal allocation rule.

emma 3. Under the regularity condition, for every 𝑖 ∈ 𝐼 ,

(a) 𝑎∗𝑖 ((𝑐𝑖, 𝐾𝑖), 𝑏−𝑖) is non-increasing in 𝑐𝑖 for fixed 𝐾𝑖 and 𝑏−𝑖;
(b) 𝑎∗𝑖 ((𝑐𝑖, 𝐾𝑖), 𝑏−𝑖) is non-decreasing in 𝐾𝑖 for fixed 𝑐𝑖 and 𝑏−𝑖;
(c) 𝐴∗

𝑖 (𝑐𝑖, 𝐾𝑖) is non-increasing in 𝑐𝑖 for fixed 𝐾𝑖;
(d) 𝐴∗

𝑖 (𝑐𝑖, 𝐾𝑖) is non-decreasing in 𝐾𝑖 for fixed 𝑐𝑖

Lemma 3 demonstrates that the obtained allocation rule presented
in (12) can be optimal in the original problem by introducing the
regularity assumption. Then, the only remaining part to derive an
optimal procurement mechanism under the regularity condition is to
construct an adequate pricing rule 𝑝∗. However, it has been found that
with the pricing rule alone, truth-telling is not necessarily a Bayesian
Nash equilibrium because bidders can make overbids on contract ca-
pacity to raise their priorities. Nevertheless, due to the feasibility
condition, there is a physical limitation for PV generators to sign long-
term contracts with more than their desirable capacity. Therefore, we
construct an additional proviso rule, together with the pricing rule,
for the bidders who make overbids on their capacity, and this proviso
rule prevents them from overbidding. The next theorem describes the
optimal mechanism.

Theorem 2. Under the regularity condition, the following pricing rule
𝑝∗ with the allocation rule 𝑎∗ suggested in (12) constitute the incentive
compatible, individually rational, feasible, and payoff-maximizing auction
𝛤 ∗ = (𝑎∗, 𝑝∗) with the proviso 𝜌:

𝑝∗𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

= 1
𝛼𝑖

(

𝑐𝑖 + ∫

𝑐

𝑐𝑖

𝐴∗
𝑖 (𝜏, 𝐾𝑖)

𝐴∗
𝑖 (𝑐𝑖, 𝐾𝑖)

𝑑𝜏

)

, ∀𝑖 ∈ 𝐼 (13)

is an additional proviso rule containing the following commitments.

(1) The auctioneer is going to examine �̂�𝑙∗ , which is the bidding capacity
of the last winner.

(2) If bidder 𝑖 is revealed to overbid her capacity 𝐾𝑖, the winner is obliged
to provide the auctioneer with the capacity min {𝐾𝑖, �̄�} at the price𝑐
𝛼
, where �̄� is the assigned capacity according to the auction result.

The proposed proviso in Theorem 2 plays a role in prohibiting bid-
ders from overbidding their capacity. Unlike Iyengar and Kumar [18],
which assumed that overbidding is not allowed, we allow bidders to
strategically overbid, and they are prevented from capacity overbidding
by the proviso rule. Bidders can overbid their capacity, and there are
three possible cases. First, the bidder wins the auction with 𝑎∗𝑖 < 𝐾𝑖.
Second, the bidder wins the auction with 𝑎∗𝑖 > 𝐾𝑖 Third, the bidder
loses the auction despite overbidding. Since we assume that the buyer
can observe the operating capacity of generators, and examination is
done with zero cost, the first case is prevented by the first proviso, and
the second case is prevented by the second proviso.

We emphasize that every agent participating in the auction knows
that the cost and time for observation are zero. This implies that
after the winner determination, the buyer will always try to examine
the last winner. Therefore, the buyer will always fulfill its declared
commitments and the bidders will believe that the commitment will

3 Random variables 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 whose joint density function
is 𝑓 (𝑥, 𝑦) are affiliated if 𝑓 (𝑥1, 𝑦1)𝑓 (𝑥2, 𝑦2) ≤ 𝑓 (max{𝑥1, 𝑥2},max{𝑦1, 𝑦2})
𝑓 (min{𝑥 , 𝑥 },min{𝑦 , 𝑦 }) for any 𝑥 , 𝑥 ∈ 𝑋 and 𝑦 , 𝑦 ∈ 𝑌 [31].
5

1 2 1 2 1 2 1 2 t
always be kept, which means that the proviso rule exists and works
effectively. This assumption is much more rational than that of Iyengar
and Kumar [18], in which the overbidding strategy is assumed to be
perfectly prevented by penalties alone, as it has ambiguous aspects with
respect to the scale of the penalty.

Although Theorem 2 states that the optimal procurement mech-
anism comprises the allocation rule 𝑎∗, the pricing rule 𝑝∗, and the
proviso 𝜌, Bayesian implementation has several weaknesses. In practice,
it may be less robust to the strategic behaviors of bidders, as there
is a possibility that any bidder may misreport its type if the bidder
anticipates other bidders to do so as well. Additionally, it is worth
noting that the mathematical expression of 𝑝∗ contains the expected
allocation 𝐴∗. As the type space of bidders is a continuum, computing
𝐴∗ becomes intractable when the number of participants increases.
To cope with these problems, we introduce the stronger concept of
incentive compatibility: dominant strategy incentive compatibility (DSIC),
which is defined as follows.

∀𝑖 ∈ 𝐼, ∀�̂�−𝑖 ∈ B−𝑖, (𝑐𝑖, 𝐾𝑖) ∈ argmax
𝑐𝑖 ,�̂�𝑖∈[𝑐,𝑐]×[0,�̄�]

{𝑢𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖, �̂�−𝑖)}. (14)

hen, the next theorem proposes the DSIC procurement mechanism.

heorem 3. Under the regularity condition, the following pricing rule 𝑝∗∗
with the allocation rule 𝑎∗ suggested in (12) and the proviso 𝜌 suggested in
Theorem 2 constitutes the dominant strategy incentive compatible, individ-
ually rational, feasible, and payoff-maximizing auction 𝛤 ∗ = (𝑎∗, 𝑝∗∗) with
the proviso 𝜌:

𝑝∗∗𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

=

⎧

⎪

⎨

⎪

⎩

1
𝛼𝑖

(

𝑐𝑖 + ∫ 𝑐
𝑐𝑖

𝑎∗𝑖 ((𝜏,𝐾𝑖),𝑏−𝑖)
𝑎∗𝑖 ((𝑐𝑖 ,𝐾𝑖),𝑏−𝑖)

𝑑𝜏
)

if 𝑎∗𝑖 > 0

0 otherwise.
(15)

The proposed mechanism in Theorem 3 has an important property
that the pricing scheme 𝑝∗∗ is composed of the deterministic function
𝑎∗, which allows us to calculate the pricing rule using a formula
from Bhat et al. [24]. To describe the complete algorithm of the auction
process, we need the inverse function of the virtual marginal profit for
fixed capacity as follows.

𝑧 = 𝐻𝑖(𝑐𝑖, 𝐾𝑖) ↔ 𝐻−1
𝑖 (𝑧) = 𝑐𝑖, ∀𝑐𝑖 ∈ [𝑐, 𝑐] for fixed 𝐾𝑖 (16)

The proposed algorithm for the optimal auction is described in Al-
gorithm 1. The time complexity to compute the allocation and pay-
ment for each bidder is 𝑂(𝑛 log 𝑛) because both rules require a sorting
lgorithm. Therefore, the total complexity of the auction is 𝑂(𝑛2 log 𝑛).

. Numerical analysis

In this section, we verify the completeness of the proposed algo-
ithm for the optimal procurement auction of PV long-term contracts
nd compare its effectiveness with some benchmark auction formats,
uch as uniform price auction and Vickrey auction. We conduct a
umerical experiment using realistic data from the historical data of the
orean long-term contract auction. To achieve this, we first introduce

he mathematical definitions of the benchmark auctions. Subsequently,
e organize the parameters used in our numerical experiments and

hen present the results and their implications. All computations were
onducted using Python. The prediction of capacity factors was done
sing the PyTorch package, and the auction simulation was performed
sing the Scipy and Numpy packages.

.1. Benchmark auctions

To evaluate the effectiveness of the proposed auction, we construct
enchmark auction models for comparison. While it is necessary to
onsider auctions with two-dimensional bidding forms to ensure a fair
omparison, existing well-known multi-unit auction models may violate

he incentive compatibility condition when they are two-dimensional.
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Algorithm 1 Implementation of the optimal auction

Input: �̃�, 𝑐0; 𝑏𝑖 = (𝑐𝑖, 𝐾𝑖), 𝛼𝑖 for 𝑖 ∈ 𝐼

function Auction(𝐼 , 𝑏, 𝛼, �̃�, 𝑐0)
Compute the allocation 𝑎∗ = Allocation(𝐼 , 𝑏, 𝛼, �̃�, 𝑐0)
for 𝑖 ∈ 𝐼 do

if 𝑎∗𝑖 > 0 then
Compute the allocation without 𝑖,
𝑎∗∗−𝑖 = Allocation(𝐼 ⧵ {𝑖}, 𝑏−𝑖, �̃�, 𝑐0, 𝛼−𝑖)
Define the redistributed allocation 𝑟−𝑖 = 𝑎∗∗−𝑖 − 𝑎∗−𝑖
𝑝∗∗𝑖 = 1

𝛼𝑖𝑎∗𝑖

∑

𝑗∈𝐼⧵{𝑖} 𝑟𝑗 max{𝐻−1
𝑖 (𝐻𝑗 (𝑐𝑗 , 𝐾𝑗 )), 𝑐}

+ (𝑎∗𝑖 −
∑

𝑗∈𝐼⧵{𝑖} 𝑎
∗∗
𝑗 )𝑐

end if
end for
return Contract (𝑎∗𝑖 , 𝑝

∗∗
𝑖 ) for 𝑖 ∈ 𝐼

end function
function Allocation(𝐼𝜃 , 𝑏𝜃 , �̃�𝜃 , 𝑐𝜃0 , 𝛼𝜃)

for 𝑖 ∈ 𝐼𝜃 do
𝐻𝑖 = 𝑐𝜃0𝛼

𝜃
𝑖 −

(

𝑐𝜃𝑖 +
𝐹𝑖(𝑐𝜃𝑖 |𝐾

𝜃
𝑖 )

𝑓𝑖(𝑐𝜃𝑖 |𝐾
𝜃
𝑖 )

)

end for
Define 𝜉: 𝐻𝜉(𝑖)(𝑐𝜃𝜉(𝑖), 𝐾

𝜃
𝜉(𝑖)) ≥ 𝐻𝜉(𝑗)(𝑐𝜃𝜉(𝑗), 𝐾

𝜃
𝜉(𝑗)) for 𝑖, 𝑗 ∈ 𝐼𝜃 and 𝑖 ≤ 𝑗

for 𝑖 ∈ 𝐼𝜃 do
if 𝐻𝜉(𝑖) ≥ 0 and �̃�𝜃 ≥ 0 then

𝑎𝜃𝜉(𝑖) = min{𝐾𝜃
𝜉(𝑖), �̃�

𝜃}; �̃�𝜃 ⟵ �̃�𝜃 − 𝑎𝜃𝜉(𝑖)
end if

end for
return 𝑎𝜃𝑖 for 𝑖 ∈ 𝐼𝜃

end function

Therefore, we consider auctions with one-dimensional bidding forms
to prevent such occurrences, where bidders have one-dimensional pri-
vate information on their costs, while their information on desirable
capacities is public. By reducing the type dimension, we are able to
utilize existing multi-unit auction models instead of the policy cost
that bidders must secure their PV capacity before participating. We
consider three well-known auction types: (1) Receive-as-bid auction,
(2) Uniform price auction, and (3) Vickrey auction.

However, Ausubel et al. [32] noted that in a multi-unit receive-
as-bid auction, equilibrium strategies do not generally exist when the
capacities of bidders are different. Therefore, we only considered the
other two auction models that satisfy DSIC and IR conditions. The
auction scheme for the uniform price auction was taken from McAfee
[33]. In this auction, the winners are selected by ordering the bids by
Levelized Cost of Electricity (LCOE) in ascending order, which repre-
sents the total costs associated with the generation facilities required
to produce 1 kWh of electricity. The contract price of each winner is
determined as the lowest LCOE among the losing bidders. Note that
LCOE can be calculated as 𝑐𝑖

𝛼𝑖
for each bidder 𝑖. On the other hand, the

Vickrey auction selects winners by ordering the bids by the capacity
cost 𝑐𝑖 to minimize the social cost and determines the contract price of
winners based on their marginal contributions to the system. We omit
the proofs of the characteristics of the benchmark auction models. The
definitions of the two benchmark models are as follows.

Definition 1 (Uniform Price Auction). Reorder bidders based on their
LCOEs, i.e., 𝑐[1]

𝛼[1]
≤ 𝑐[2]

𝛼[2]
≤ ⋯ ≤ 𝑐[𝑛]

𝛼[𝑛]
. Define 𝑙𝑈 such that ∑𝑙𝑈−1

𝑖=1 𝐾[𝑖] ≤

�̃� ≤
∑𝑙𝑈 𝐾 . Then, a dominant strategy incentive compatible and
6

𝑖=1 [𝑖]
individually rational uniform price auction 𝛤𝑈 = (𝑎𝑈 , 𝑝𝑈 ) has the
following form:

𝑎𝑈𝑖 =

{

𝐾𝑖 if [𝑖] ≤ 𝑙𝑈

0 otherwise
, 𝑝𝑈𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑐[𝑙𝑈 +1]
𝛼[𝑙𝑈 +1]

if 𝑎𝑈𝑖 > 0

0 otherwise.

Definition 2 (Vickrey Auction). Reorder bidders based on their costs,
i.e., 𝑐[1] ≤ 𝑐[2] ≤ ⋯ ≤ 𝑐[𝑛]. Define 𝑙𝑉 such that ∑𝑙𝑉 −1

𝑖=1 𝐾[𝑖] ≤ �̃� ≤
∑𝑙𝑉

𝑖=1 𝐾[𝑖]. Then, a dominant strategy incentive compatible and indi-
vidually rational Vickrey auction 𝛤 𝑉 = (𝑎𝑉 , 𝑝𝑉 ) has the following
form:

𝑎𝑉𝑖 =

⎧

⎪

⎨

⎪

⎩

𝐾𝑖 if [𝑖] < 𝑙𝑉

�̃� −
∑𝑙𝑉 −1

𝑗=1 𝐾[𝑗] if [𝑖] = 𝑙𝑉

0 otherwise
, 𝑝𝑉𝑖 = 1

𝛼𝑖𝑎𝑉𝑖
(
∑

𝑗≠𝑖
𝑐𝑗𝑎

𝑉 ⧵{𝑖}
𝑗 −

∑

𝑗≠𝑖
𝑐𝑗𝑎

𝑉
𝑗 ),

where 𝑎𝑉 ⧵{𝑖} is a Vickrey allocation conducted without bidder 𝑖.

5.2. Experiment parameters

In this section, we organize the parameters used for the numerical
experiment. To conduct an experiment that reflects real-world con-
ditions as closely as possible, we determined the parameters based
on historical data from the Korean PV market. This data primarily
consists of the results of the PV long-term contract auction held in the
second half of 2021. Firstly, we generate the bidders’ type profiles from
the type distributions. Furthermore, we propose a time-series model
to estimate the capacity factor of each bidder, which is a key factor
in determining the winner. Lastly, we determine the other necessary
parameters for the suggested auction process.

In order to generate bidders’ information, we fully incorporate the
current PV auction system of Korea. In this system, participants are
divided into several groups based on their bidding capacity range, and
the auctioneer then evenly allocates the total capacity to each group to
ensure equal competition rates across the groups. Therefore, we divide
bidders into four groups (denoted as A, B, C, and D) based on their
capacity range and assume that each group installs different types of
PV panels. We do not consider PV generators whose contract capacity
exceeds 20 MW, as we regard them as large-scale operators who are not
eligible for support through PV long-term contracts. Additionally, we
assume that the cost and capacity are independent within each group.

To conduct numerical experiments, we construct two scenarios in
which the marginal distributions of the cost follow a normal distri-
bution in the first scenario and a uniform distribution in the second
scenario. In each scenario, the standard deviation of the cost in each
group is set to be 10% of the mean. Additionally, the capacity fol-
lows a uniform distribution in both scenarios. All the assumptions
regarding capacity and cost for each group are derived from Korea
Energy Economics Institute [34] and Korea New and Renewable Energy
Center [35]. For details about the distributions used in the numerical
experiment, please refer to Table 1.

Next, we adopt the Auto-regressive Neural Network model (AR-
Net) proposed by Triebe et al. [36] to estimate the expected capacity
factor of each bidder during the contract period at the beginning of
the auction. AR-Net is a feed-forward neural network whose structure
is based on the classic auto-regressive model. Although many factors
affect the generation efficiency of PV panels such as daily weather and
PV panel performance, the main driver is daylight time which highly
depends on the season. Therefore, we use time-series data of monthly
capacity factors to estimate future PV generation efficiency. To train the
model, historical data on monthly capacity factors from the last 5 years
of 17 different administrative districts in Korea is used. This data is
obtained from Electric Power Statistics Information System [12].

We trained the model using the previous four years and tested it
using the data from the last year. The hyperparameters of the AR-Net
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Table 1
The bidders’ type distributions.

Group Number of bidders Capacity (kW) Cost (103 KRWa)

Scenario 1 Scenario 2

A 4000 𝑈 [3, 100] 𝑁(2300, 2302) 𝑈 [2300 − 230
√

3, 2300 + 230
√

3]
B 3000 𝑈 [100, 1000] 𝑁(2100, 2102) 𝑈 [2100 − 210

√

3, 2100 + 210
√

3]
C 1000 𝑈 [1000, 3000] 𝑁(1800, 1802) 𝑈 [1800 − 180

√

3, 1800 + 180
√

3]
D 20 𝑈 [3000, 20000] 𝑁(1700, 1702) 𝑈 [1700 − 170

√

3, 1700 + 170
√

3]

a KRW is a monetary unit of Korea and 1 USD ≃ 1300 KRW as of Dec, 2022.
Fig. 2. Prediction of the capacity factor for the next 20 years.
Table 2
Parameters for numerical example of PV auction.

Parameters Values

�̃� (kW) 2,000,000
𝑇 (months) 240
𝑐0 (103 KRW) 0.3
𝑟 (monthly) 0.4%
𝑑 (monthly) 0.05%

were determined through several trials to balance the train and test
errors, using mean squared error (MSE) as a loss function. We set the
time lag as 12 and used a neural network structure with 2 layers, each
containing 20 nodes. The training was performed based on the Adam
optimizer with a learning rate of 0.5% for 500 epochs. After training
the AR-Net model, the capacity factors for the next 20 years in 17
regions of Korea were predicted. Fig. 2 shows representative examples
of monthly capacity factor predictions for three different regions, which
were introduced in Section 1. The final training MSE is 2.1194, and the
test MSE is 4.9533, which implies that the average prediction errors are
in the range of 2.5%.

The only remaining part is to determine the regions of the bidders,
which will determine 𝛼𝑖. The regions of bidders are randomly selected
in proportion to the cumulative PV installation of panels in each of the
17 regions of Korea, as depicted in Fig. 3. The total capacity to be al-
located in the procurement auction experiment is set to 2,000,000 kW,
which is redistributed to each group in proportion to the sum of the
bidders’ capacities of each group so that the competition rate for
each group can be constant. The other parameters for the numerical
experiment are listed in Table 2.

5.3. Experiment results

The primary results of the simulation are presented in Table 3. In
both scenarios, the total capacity allocated to each group is similar at
7

Fig. 3. Proportion of cumulative PV installation in Korea.

equilibrium, although the selected bidders differ. Furthermore, despite
the challenge of incorporating various realistic parameters, the average
winning prices are shown to be at a similar level to the actual Korean
PV auction in 2021, where the average winning price was 143.1
KRW/kWh.

Regarding the relationship between the winning price and LCOE,
the difference between them can be interpreted as the information rent,
which has two characteristics. First, regardless of the cost distribution,
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Table 3
Primary results of the proposed auction.

Group Number of
winners

Competition
rate

Total
allocation
(kW)

Average LCOE
of winners
(KRW/kWh)

Average
receipts
(KRW/kWh)

Average NPV
of winners
(103 KRW)

Scenario 1
A 1956 2.045:1 99,828 135.0 147.6 10,058
B 1437 2.088:1 802,316 123.0 134.7 103,664
C 478 2.092:1 988,701 105.7 115.1 318,609
D 11 1.818:1 109,155 106.1 113.7 1,327,920
Scenario 2
A 1984 2.016:1 100,649 134.5 148.1 10,931
B 1468 2.044:1 815,475 122.7 134.7 107,316
C 486 2.058:1 977,801 105.5 115.8 324,481
D 10 2.000:1 106,075 101.8 114.4 2,239,025
Table 4
Comparison for average LCOEs and receipts of the auctions (Unit: KRW/kWh).

Results Group Scenario 1 Scenario 2

Proposed Uniform Vickrey Proposed Uniform Vickrey

Average LCOE A 135.0 (9.1) 135.0 (9.1) 136.1 (10.6) 134.5 (8.2) 134.5 (8.2) 135.4 (9.7)
(std.) B 123.0 (8.6) 122.8 (8.5) 124.0 (10.1) 122.6 (7.3) 122.6 (7.3) 123.3 (8.5)

C 105.7 (7.0) 105.5 (6.9) 106.6 (8.3) 105.5 (6.2) 105.4 (6.1) 106.3 (7.3)
D 106.1 (6.7) 106.1 (6.7) 107.5 (6.9) 101.7 (6.2) 101.6 (5.9) 102.8 (6.9)

Average receipt A 147.6 (0.7) 147.6 (–) 147.8 (6.8) 148.1 (0.1) 148.0 (–) 148.4 (6.7)
(std.) B 134.7 (1.0) 134.2 (–) 134.9 (6.3) 134.7 (0.6) 134.6 (–) 134.6 (6.1)

C 115.1 (1.6) 114.8 (–) 115.6 (5.4) 115.8 (1.3) 115.6 (–) 116.2 (5.3)
D 113.7 (0.7) 114.3 (–) 114.3 (5.2) 114.4 (1.8) 114.5 (–) 118.3 (4.9)
b
b

the information rent tends to increase as group capacity decreases. This
is because costs tend to rise as capacity decreases, resulting in a higher
price premium for truthful reports from bidders. Second, although
the mean and standard deviation of the cost distribution in the two
scenarios are equal, the information rent in the uniform distribution
tends to be greater than in the normal distribution due to its higher
variation in information uncertainty (e.g., Pr

(

|

𝑥−𝜇
𝜎 | ≤ 1

)

≃ 68% in the
ormal distribution; ≃ 58% in the uniform distribution).

Next, we compare the outcomes of the proposed model with the
enchmark models in multiple aspects to verify the performance of
he proposed optimal PV auction. First, Table 4 organizes the average
COEs and receipts of the winning bidders in each auction format. It
onsistently demonstrates the lowest average LCOEs in both scenarios
cross all groups. However, it does not show a significant difference
n the LCOEs of the proposed model, and the average contract price is
lso similar between the two auctions, although the proposed auction
eceives two-dimensional bids. On the other hand, the Vickrey auction,
hich has an allocation rule that minimizes social costs, shows that the
verall LCOEs and contract prices are higher than those of the other two
uctions.

Moreover, these results are validated by comparing the standard
eviation of winning bidders’ LCOE and receipts. In the case of LCOE,
he proposed auction and the uniform auction show similar levels
cross all groups, indicating that nearly identical bidders are awarded.
owever, in the case of the Vickrey auction, we observe a larger
eviation in LCOE compared to the other two auctions, suggesting that
he system may have lower stability. Additionally, in terms of receipts,
he proposed auction exhibits a significantly lower standard deviation
ompared to the Vickrey auction. Since both auctions are discrimi-
atory auctions, a low standard deviation indicates that the winning
idders’ receipts are similar, implying a more fair and envy-free auction
echanism.

The overall social outcomes of the auctions are summarized in
ig. 4. The total social cost, as described in (a), is minimized in the
ickrey auction due to its defined allocation rule. The proposed auction

ncreases the social cost by about 1% higher than the minimum social
ost in both scenarios, which is the highest among the three auction
ormats. Meanwhile, the expected procured electricity by the contract,
s described in (b), is maximized in the proposed auction, followed
8

y the uniform price auction format and the Vickrey auction. This is
ecause the unit benefits 𝑐0 for the government’s purchase of one unit

of electricity generated by PV is generally higher than the LCOE of
PV. Therefore, the government aims to secure as much PV energy as
possible in our proposed auction. Finally, the auctioneer’s payoff is,
of course, maximized in the proposed auction, but the uniform price
auction format exhibits a similar level, whereas the Vickrey auction is
almost 20 billion KRW lower than the proposed one.

Taken together, these results confirm that our proposed auction,
despite adopting a discriminatory auction scheme, can increase both
expected procured electricity and the buyer’s payoff compared to the
uniform and Vickrey auction formats. Since all individual rational (IR)
conditions are met, sellers do not refuse market participation even
when their costs increase. Therefore, we can conclude that this auction
scheme offers various advantages.

6. Conclusion

The expansion of renewable energy generation is considered one of
the challenges in the pursuit of carbon neutrality. Photovoltaic energy,
the predominant source of renewable power generation, faces high un-
certainties concerning power generation and profitability, necessitating
the implementation of appropriate support policies. This study designed
a procurement auction for PV long-term contracts in a direct revelation
environment in which bidders bid on their desirable PV capacity and
the life cycle cost. Focusing on the uncertainty of PV generation, we
defined the payoffs of bidders and the auctioneer to quantify the ex-
pected net present values during the entire contract period. To find the
optimal mechanism from the government’s perspective, we identified
key characteristics of the incentive-compatible, individually rational,
feasible and payoff-maximizing mechanism within a two-dimensional
framework. Additionally, we proposed a computational algorithm to
determine the winning bids along with their corresponding contract
prices. We also developed prediction methods for estimating future PV
generation using time-series models.

The study identified the optimal allocation and pricing rules for a
procurement auction of PV long-term contracts to incentivize truthful

reporting of costs and capacities by bidders while maximizing the
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Fig. 4. The social outcomes of each auction format.
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uctioneer’s expected payoff and ensuring compliance with certain con-
itions. Incorporating information rents, the auctioneer can maximize
ts expected payoff by ordering the bidders with their virtual marginal
rofit. Numerical analysis using realistic parameters retrieved from the
orean PV energy market revealed that small-capacity generators tend

o receive higher contract prices, and the proposed two-dimensional
uction model showed similar LCOEs and receipts to the uniform price
uction and lower than those in the Vickrey auction. Although the
roposed model had the highest total cost, it resulted in higher expected
V electricity procurement and the buyer’s payoff.

While this study proposed a novel approach to designing a two-
imensional procurement auction in a discriminatory format that con-
iders the unique characteristics of PV energy generation, there are
everal areas for improvement. Firstly, we assumed that generators
ould fulfill their entire production under the contract, but they may

trategically choose to break the contract based on market conditions.
uture research could explore how to account for this strategic behav-
or. Secondly, while we used real data to make predictions about future
V generation using a time series model, future research could derive
ayoff functions and auction rules using a more sophisticated stochastic
odel. Furthermore, it is theoretically challenging to find an indirect
echanism that can implement the direct mechanism we proposed in
unit payment setting, unlike a lump-sum payment setting suggested

n Iyengar and Kumar [18]. However, proposing an appropriate indirect
echanism is crucial for enhancing the implementability of the auction

cheme. Therefore, it is essential to investigate this aspect in future
ork.
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ppendix

roof of Lemma 1.

emark. If 𝛤 = (𝑎, 𝑝) is incentive compatible, then

(a) 𝑈𝑖(𝑐𝑖, 𝐾𝑖) is convex in 𝑐𝑖;
(b) For any 𝜖 > 0, 𝑈𝑖(𝑐𝑖, 𝐾𝑖) − 𝑈𝑖(𝑐𝑖 − 𝜖, 𝐾𝑖) ≤ −𝜖𝐴𝑖(𝑐𝑖, 𝐾𝑖) ≤ 𝑈𝑖(𝑐𝑖 +

𝜖, 𝐾𝑖) − 𝑈𝑖(𝑐𝑖, 𝐾𝑖).

roof of Remark. Let 𝛤 = (𝑎, 𝑝) be an incentive compatible mechanism.
hen, truthful bidding maximizes the interim payoff of every bidder
∈ 𝐼 , which means

𝑖(𝑐𝑖, 𝐾𝑖) = sup
(𝑐𝑖 ,�̂�𝑖)∈[𝑐,𝑐]×[0,�̄�]

{

𝑈𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖)
}

(A.1)

eanwhile, the payoff of bidder 𝑖 for any reported type (𝑐𝑖, �̂�𝑖) is

̂ [ ̂ ̂ ] ̂
𝑖(𝑐𝑖, 𝐾𝑖|𝑐𝑖, 𝐾𝑖) = E𝑏−𝑖 𝛼𝑖𝑝𝑖((𝑐𝑖, 𝐾𝑖), 𝑏−𝑖)𝑎𝑖((𝑐𝑖, 𝐾𝑖), 𝑏−𝑖) −𝑐𝑖𝐴𝑖(𝑐𝑖, 𝐾𝑖), (A.2)
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which implies that 𝑈𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖) is affine in 𝑐𝑖. Therefore, for any
′
𝑖 , 𝑐

′′
𝑖 ∈ [𝑐, 𝑐] and 𝑡 ∈ [0, 1], we have the following.

𝑖(𝑐𝑖, �̂�𝑖|𝑡𝑐
′
𝑖 + (1 − 𝑡)𝑐′′𝑖 , 𝐾𝑖) = 𝑡𝑈𝑖(𝑐𝑖, �̂�𝑖|𝑐

′
𝑖 , 𝐾𝑖) + (1 − 𝑡)𝑈𝑖(𝑐𝑖, �̂�𝑖|𝑐

′′
𝑖 , 𝐾𝑖)

≤ 𝑡𝑈𝑖(𝑐′𝑖 , 𝐾𝑖) + (1 − 𝑡)𝑈𝑖(𝑐′′𝑖 , 𝐾𝑖). (A.3)

ecause 𝑡𝑈𝑖(𝑐′𝑖 , 𝐾𝑖)+ (1− 𝑡)𝑈𝑖(𝑐′′𝑖 , 𝐾𝑖) is an upper bound for any reported
type, it also holds when bidder 𝑖 reports true type. Then, we get

𝑈𝑖(𝑡𝑐′𝑖 + (1 − 𝑡)𝑐′′𝑖 , 𝐾𝑖) ≤ 𝑡𝑈𝑖(𝑐′𝑖 , 𝐾𝑖) + (1 − 𝑡)𝑈𝑖(𝑐′′𝑖 , 𝐾𝑖), (A.4)

which proves that 𝑈𝑖(𝑐𝑖, 𝐾𝑖) is convex with respect to 𝑐𝑖. Further, for
any 𝜖 > 0, we have

𝑈𝑖(𝑐𝑖 + 𝜖, 𝐾𝑖) ≥ 𝑈𝑖(𝑐𝑖, 𝐾𝑖|𝑐𝑖 + 𝜖, 𝐾𝑖)

= E𝑏−𝑖

[

𝛼𝑖𝑝𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

𝑎𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)]

− (𝑐𝑖 + 𝜖)𝐴𝑖(𝑐𝑖, 𝐾𝑖)

= 𝑈𝑖(𝑐𝑖, 𝐾𝑖) − 𝜖𝐴𝑖(𝑐𝑖, 𝐾𝑖), (A.5)

Similarly, we have

𝑈𝑖(𝑐𝑖 − 𝜖, 𝐾𝑖) ≥ 𝑈𝑖(𝑐𝑖, 𝐾𝑖|𝑐𝑖 − 𝜖, 𝐾𝑖)

= E𝑏−𝑖

[

𝛼𝑖𝑝𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

𝑎𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)]

− (𝑐𝑖 − 𝜖)𝐴𝑖(𝑐𝑖, 𝐾𝑖)

= 𝑈𝑖(𝑐𝑖, 𝐾𝑖) + 𝜖𝐴𝑖(𝑐𝑖, 𝐾𝑖), (A.6)

which completes the proof of the remark.

Then, if we divide the inequality (b) of the Remark by 𝜖 > 0 and
take the limit to zero, we have

lim
𝜖→0

𝑈𝑖(𝑐𝑖, 𝐾𝑖) − 𝑈𝑖(𝑐𝑖 − 𝜖, 𝐾𝑖)
𝜖

≤ −𝐴𝑖(𝑐𝑖, 𝐾𝑖)

≤ lim
𝜖→0

𝑈𝑖(𝑐𝑖 + 𝜖, 𝐾𝑖) − 𝑈𝑖(𝑐𝑖, 𝐾𝑖)
𝜖

(A.7)

By (a) of the Remark, 𝑈𝑖(𝑐𝑖, 𝐾𝑖) is convex in 𝑐𝑖 and thus differentiable
lmost everywhere. If 𝑈𝑖(𝑐𝑖, 𝐾𝑖) is differentiable in a certain point 𝑐𝑖,
hen the limit of (A.7) is
𝜕𝑈𝑖(𝑐𝑖, 𝐾𝑖)

𝜕𝑐𝑖
= −𝐴𝑖(𝑐𝑖, 𝐾𝑖) (A.8)

Then, the convexity of 𝑈𝑖(𝑐𝑖, 𝐾𝑖) in 𝑐𝑖 implies that 𝐴𝑖(𝑐𝑖, 𝐾𝑖) is non-
increasing in 𝑐𝑖. Also, 𝑈𝑖(𝑐𝑖, 𝐾𝑖) can be described as

∫

𝑐

𝑐𝑖
−𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏 = ∫

𝑐

𝑐𝑖

𝜕𝑈𝑖(𝜏, 𝐾𝑖)
𝜕𝑐𝑖

𝑑𝜏 = 𝑈𝑖(𝑐, 𝐾𝑖) − 𝑈𝑖(𝑐𝑖, 𝐾𝑖), (A.9)

i.e., 𝑈𝑖(𝑐𝑖, 𝐾𝑖) = 𝑈𝑖(𝑐, 𝐾𝑖) + ∫ 𝑐
𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏. ■

roof of Theorem 1. By Lemma 1, under an incentive compatible
echanism 𝛤 = (𝑎, 𝑝),

𝑏−𝑖

[

𝛼𝑖𝑝𝑖
(

𝑏𝑖, 𝑏−𝑖
)

𝑎𝑖(𝑏𝑖, 𝑏−𝑖)
]

= 𝑐𝑖𝐴𝑖(𝑐𝑖, 𝐾𝑖) + 𝑈𝑖(𝑐, 𝐾𝑖) + ∫

𝑐

𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏.

(A.10)

Then, the objective function of the buyer can be rewritten as follows.

𝛱(𝛤 ) = E𝑏

[ 𝑛
∑

𝑖=1
𝛼𝑖(𝑐0 − 𝑝𝑖(𝑏))𝑎𝑖(𝑏)

]

= E𝑏

[ 𝑛
∑

𝑖=1
𝛼𝑖𝑐0𝑎𝑖(𝑏)

]

−
𝑛
∑

𝑖=1
E𝑏𝑖

[

𝑐𝑖𝐴𝑖(𝑐𝑖, 𝐾𝑖) + 𝑈𝑖(𝑐, 𝐾𝑖) + ∫

𝑐

𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏

]

= E𝑏

[ 𝑛
∑

𝑖=1

(

𝛼𝑖𝑐0 − 𝑐𝑖
)

𝑎𝑖(𝑏) −
𝑛
∑

𝑖=1
𝑈𝑖(𝑐, 𝐾𝑖)

]

−
𝑛
∑

𝑖=1
E𝑏𝑖

[

∫

𝑐

𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏

]

(A.11)
10
Also, E𝑏𝑖

[

∫ 𝑐
𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏

]

can be computed as

E𝑏𝑖

[

∫

𝑐

𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏

]

= ∫

�̄�

0 ∫

𝑐

𝑐

[

∫

𝑐

𝑐𝑖
𝐴𝑖(𝜏, 𝐾𝑖)𝑑𝜏

]

𝑓𝑖(𝑐𝑖, 𝐾𝑖)𝑑𝑐𝑖𝑑𝐾𝑖

= ∫

�̄�

0 ∫

𝑐

𝑐
𝐴𝑖(𝜏, 𝐾𝑖)∫

𝜏

𝑐
𝑓𝑖(𝑐𝑖, 𝐾𝑖)𝑑𝑐𝑖𝑑𝜏𝑑𝐾𝑖

= ∫

�̄�

0 ∫

𝑐

𝑐
𝐴𝑖(𝜏, 𝐾𝑖)

𝐹𝑖(𝜏|𝐾𝑖)
𝑓𝑖(𝜏|𝐾𝑖)

𝑓𝑖(𝜏|𝐾𝑖)𝑑𝜏𝑓𝑖(𝐾𝑖)𝑑𝐾𝑖

= E𝑏[𝑎𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
) 𝐹𝑖(𝑐𝑖|𝐾𝑖)
𝑓𝑖(𝑐𝑖|𝐾𝑖)

]. (A.12)

Combining (A.11) and (A.12), we have

𝛱(𝛤 ) = E𝑏

[ 𝑛
∑

𝑖=1

(

𝛼𝑖𝑐0 −
(

𝑐𝑖 +
𝐹𝑖(𝑐𝑖|𝐾𝑖)
𝑓𝑖(𝑐𝑖|𝐾𝑖)

))

𝑎𝑖(𝑏) −
𝑛
∑

𝑖=1
𝑈𝑖(𝑐, 𝐾𝑖)

]

■

(A.13)

roof of Lemma 2. We can refer to the relaxed problem as the primal
problem. We assume without loss of generality that 𝐻𝑖(𝑐𝑖, 𝐾𝑖) ≥ 0 for
ll 𝑖 ∈ 𝐼 . Using the solution suggested in Lemma 2, the objective func-
ion value is given by ∑𝑙∗−1

𝑖=1 𝐻𝜉(𝑖)(𝑐𝜉(𝑖), 𝐾𝜉(𝑖))𝐾𝜉(𝑖) + 𝐻𝜉(𝑙)(𝑐𝜉(𝑙), 𝐾𝜉(𝑙))(�̃� −
∑𝑙∗−1

𝑖=1 𝐾𝜉(𝑖)). If we derive the dual problem of the relaxed problem, we
obtain

min
𝜇,𝜆𝑖

�̃�𝜇 +
𝑛
∑

𝑖=1
𝐾𝑖𝜆𝑖 (A.14)

s.t. 𝜇 + 𝜆𝑖 ≥ 𝐻𝑖(𝑐𝑖, 𝐾𝑖), ∀𝑖 ∈ 𝐼 (A.15)

𝜇 ≥ 0, 𝜆𝑖 ≥ 0, ∀𝑖 ∈ 𝐼. (A.16)

From (A.15) and (A.16), we can transform 𝜆𝑖 = max{0,𝐻𝑖(𝑐𝑖, 𝐾𝑖) − 𝜇}
and the dual problem is reduced to

min
𝜇≥0

�̃�𝜇 +
𝑛
∑

𝑖=1
𝐾𝜉(𝑖) max{0,𝐻𝜉(𝑖)(𝑐𝜉(𝑖), 𝐾𝜉(𝑖)) − 𝜇}. (A.17)

Then, if we set 𝜇∗ = 𝐻𝜉(𝑙∗)(𝑐𝜉(𝑙∗), 𝐾𝜉(𝑙∗)), the objective function value of
the dual problem is the same as that of primal problem:
�̃�𝐻𝜉(𝑙∗)(𝑐𝜉(𝑙∗), 𝐾𝜉(𝑙∗)) +

∑𝑙∗−1
𝑖=1 𝐾𝜉(𝑖)𝐻𝜉(𝑖)(𝑐𝜉(𝑖), 𝐾𝜉(𝑖)) −

∑𝑙∗−1
𝑖=1 𝐾𝜉(𝑖)𝐻𝜉(𝑙∗)

(𝑐𝜉(𝑙∗), 𝐾𝜉(𝑙∗)), which is exactly same with the objective function value
of the primal problem. Therefore, by the strong duality, the solution
proposed in Lemma 2 is optimal. ■

Proof of Lemma 3. Assume that the regularity condition holds. Fix
𝐾𝑖 and 𝑏−𝑖. Let 𝑐𝑖 ≤ 𝑐′𝑖 and denote the corresponding rankings as 𝜉−11 (𝑖)
and 𝜉−12 (𝑖). Then, we have 𝜉−11 (𝑖) ≤ 𝜉−12 (𝑖). If 𝜉−11 (𝑖) ≤ 𝑙∗, according to the
definition of 𝑎∗, we have

𝑎∗𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

=

{

𝐾𝑖 if 𝜉−11 (𝑖) < 𝑙∗

�̃� −
∑𝑙∗−1

𝑗=1 𝐾𝑗 if 𝜉−11 (𝑖) = 𝑙∗
≥ 𝑎∗𝑖

(

(𝑐′𝑖 , 𝐾𝑖), 𝑏−𝑖
)

.

(A.18)

If 𝜉−11 (𝑖) > 𝑙∗, then, again by the definition of 𝑎∗,

𝑎∗𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

= 𝑎∗𝑖 ((𝑐
′
𝑖 , 𝐾𝑖), 𝑏−𝑖) = 0. (A.19)

For all cases, 𝑐𝑖 ≤ 𝑐′𝑖 implies 𝑎∗𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

≥ 𝑎∗𝑖
(

(𝑐′𝑖 , 𝐾𝑖), 𝑏−𝑖
)

, which
proves (a). The proof of (b) is omitted because it is analogous to (a).

(c) comes directly from (a). For fixed 𝐾𝑖, 𝑐𝑖 ≤ 𝑐′𝑖 implies 𝑎∗𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)

≥ 𝑎∗𝑖
(

(𝑐′𝑖 , 𝐾𝑖), 𝑏−𝑖
)

for any 𝑏−𝑖. Therefore, by the definition
of 𝐴∗, we have

𝐴∗
𝑖 (𝑐𝑖, 𝐾𝑖) = E𝑏−𝑖

[

𝑎∗𝑖
(

(𝑐𝑖, 𝐾𝑖), 𝑏−𝑖
)]

≥ E𝑏−𝑖

[

𝑎∗𝑖
(

(𝑐′𝑖 , 𝐾𝑖), 𝑏−𝑖
)]

= 𝐴∗
𝑖 (𝑐

′
𝑖 , 𝐾𝑖).

(A.20)

One can easily show that (b) implies (d). ■

Proof of Theorem 2.
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Step 1. 𝛤 ∗ = (𝑎∗, 𝑝∗) with proviso 𝜌 is feasible and incentive compatible.

To prove incentive compatibility, we consider a bidder 𝑖 ∈ 𝐼 .
Assuming all bidders except 𝑖 play truthfully, let bidder 𝑖’s bid and true
type be (𝑐𝑖, �̂�𝑖) and (𝑐𝑖, 𝐾𝑖), respectively. Under 𝛤 ∗, bidder 𝑖’s interim
payoff is given by

𝑈𝑖(𝑐𝑖, �̂�𝑖|𝑐𝑖, 𝐾𝑖) = (𝑐𝑖 − 𝑐𝑖)𝐴∗
𝑖 (𝑐𝑖, �̂�𝑖) + ∫

𝑐

𝑐𝑖
𝐴∗
𝑖 (𝜏, �̂�𝑖)𝑑𝜏

= (𝑐𝑖 − 𝑐𝑖)𝐴∗
𝑖 (𝑐𝑖, �̂�𝑖) − ∫

𝑐𝑖

𝑐𝑖
𝐴∗
𝑖 (𝜏, �̂�𝑖)𝑑𝜏 + ∫

𝑐

𝑐𝑖
𝐴∗
𝑖 (𝜏, �̂�𝑖)𝑑𝜏

≤ ∫

𝑐

𝑐𝑖
𝐴∗
𝑖 (𝜏, �̂�𝑖)𝑑𝜏 (A.21)

The last inequality holds because the function 𝐴∗
𝑖 (𝑐𝑖, 𝐾𝑖) is non-

increasing in 𝑐𝑖 by the part (c) of Lemma 3. Also, notice that 𝑈𝑖(𝑐𝑖, 𝐾𝑖) =
∫ 𝑐
𝑐𝑖
𝐴∗
𝑖 (𝜏, 𝐾𝑖)𝑑𝜏. Now, we shall show

∫

𝑐

𝑐𝑖
𝐴∗
𝑖 (𝜏, �̂�𝑖)𝑑𝜏 ≤ ∫

𝑐

𝑐𝑖
𝐴∗
𝑖 (𝜏, 𝐾𝑖)𝑑𝜏 = 𝑈𝑖(𝑐𝑖, 𝐾𝑖). (A.22)

For �̂�𝑖 ≤ 𝐾𝑖, by (d) of Lemma 3, we have 𝐴∗
𝑖 (𝜏, �̂�𝑖) ≤ 𝐴∗

𝑖 (𝜏, 𝐾𝑖). By
integrating both sides of the inequality, one can see that (A.22) holds.
Consider the overbidding cases. Suppose bidder 𝑖 overbids her capacity.
Without loss of generality, 𝑖 bids (𝑐𝑖, �̂�𝑖) where �̂�𝑖 > 𝐾𝑖. In case of 𝑖 wins
the procurement with 𝑎∗𝑖 ((𝑐𝑖, �̂�𝑖), 𝑏−𝑖) > 𝐾𝑖, the overbidding is directly
observed and her payoff equals (𝛼𝑖

𝑐
𝛼
− 𝑐𝑖)𝐾𝑖. Since 𝛼 = sup𝑖∈𝐼 {𝛼𝑖, 1}, it

follows that

(𝛼𝑖
𝑐
𝛼
− 𝑐𝑖)𝐾𝑖 ≤ (𝑐 − 𝑐𝑖)𝐾𝑖 ≤ 0 (A.23)

If 𝑖 wins the procurement with 𝑎∗𝑖 ((𝑐𝑖, �̂�𝑖), 𝑏−𝑖) < 𝐾𝑖, her payoff equals

𝛼𝑖
𝑐
𝛼
− 𝑐𝑖)𝑎∗𝑖 ((𝑐𝑖, �̂�𝑖), 𝑏−𝑖) ≤ (𝑐 − 𝑐𝑖)𝑎∗𝑖 ((𝑐𝑖, �̂�𝑖), 𝑏−𝑖) ≤ 0 (A.24)

inally, it is clear that if 𝑖 loses the procurement with bid (𝑐𝑖, �̂�𝑖), she
ets 0. For all cases, overbidding yields payoffs less or equal to 0.
his shows that bidder 𝑖 has no incentive to report its capacity not
ishonestly. Furthermore, the mechanism is feasible since it is incentive
ompatible.

tep 2. 𝛤 ∗ = (𝑎∗, 𝑝∗) with proviso 𝜌 is individually rational.

Since ∀𝑐 ∈ [𝑐, 𝑐], the expected allocation 𝐴∗
𝑖 (𝑐, 𝐾𝑖) ≥ 0. Therefore, we

ave 𝑈𝑖(𝑐𝑖, 𝐾𝑖) = ∫ 𝑐
𝑐𝑖
𝐴∗
𝑖 (𝜏, 𝐾𝑖)𝑑𝜏 ≥ 0 for every type (𝑐𝑖, 𝐾𝑖) ∈ [𝑐, 𝑐]×[0, �̄�].

tep 3. 𝛤 ∗ = (𝑎∗, 𝑝∗) with proviso 𝜌 maximizes the buyer’s payoff.

Consider any feasible mechanism. By the revelation principle, there
xists a corresponding direct revelation mechanism 𝛤 = (𝑎, 𝑝) which
nsures the same result. Then, by the revenue equivalence theorem,

(𝛤 ) = E𝑏

[ 𝑛
∑

𝑖=1
𝐻𝑖(𝑐𝑖, 𝐾𝑖)𝑎𝑖(𝑏) −

𝑛
∑

𝑖=1
𝑈𝑖(𝑐, 𝐾𝑖)

]

≤ E𝑏

[ 𝑛
∑

𝑖=1
𝐻𝑖(𝑐𝑖, 𝐾𝑖)𝑎∗𝑖 (𝑏)

]

= 𝛱(𝛤 ∗). (A.25)

The last equality holds since 𝑈𝑖(𝑐, 𝐾𝑖) = ∫ 𝑐
𝑐 𝐴∗

𝑖 (𝜏, 𝐾𝑖)𝑑𝜏 = 0. ■

Proof of Theorem 3. The proof is similar to the proof of Theorem 2.
Let �̂�−𝑖 denote the reported types of the other bidders for 𝑖 ∈ 𝐼 . The
ex-post payoff of bidder 𝑖 when bidding (𝑐𝑖, �̂�𝑖) and having a true type
f (𝑐𝑖, 𝐾𝑖) can be expressed as follows.

𝑖((𝑐𝑖, �̂�𝑖)|𝑐𝑖, 𝐾𝑖, �̂�−𝑖) = (𝑐𝑖 − 𝑐𝑖)𝑎∗𝑖 ((𝑐𝑖, �̂�𝑖), �̂�−𝑖) + ∫

𝑐

𝑐𝑖
𝑎∗𝑖 ((𝜏, �̂�𝑖), �̂�−𝑖)𝑑𝜏

≤ ∫

𝑐

𝑐𝑖
𝑎∗𝑖 ((𝜏, �̂�𝑖), �̂�−𝑖)𝑑𝜏 (A.26)
11
The last inequality is held by part (a) of Lemma 3. Clearly, by the
proviso 𝜌, overbidding �̂�𝑖 > 𝐾𝑖 yields non-positive payoff. Also, by part
(b) of Lemma 3, we can rule out the underbidding �̂�𝑖 ≤ 𝐾𝑖. So, we have

∫

𝑐

𝑐𝑖
𝑎∗𝑖 ((𝜏, �̂�𝑖), 𝑏−𝑖)𝑑𝜏 ≤ ∫

𝑐

𝑐𝑖
𝑎∗𝑖 ((𝜏, 𝐾𝑖), 𝑏−𝑖)𝑑𝜏 = 𝑢𝑖(𝑐𝑖, 𝐾𝑖) (A.27)

which proves that truth-telling is a weakly dominant strategy for all
bidders. The other properties are analogous to the proof of Theorem 2.

■
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